Non-stoichiometry in intermetallics

Thermoelectrics compounds 000000

Ground state map of M-H

Outlooks & Conclusions

Rencontre CINES-chercheurs en chimie

Thermodynamic modeling assisted by massive first principles calculations

J.-C. Crivello¹, DARI A0020906175

¹CMTR ICMPE UMR7182, UPE CNRS, Thiais, France

CINES, Montpellier, Septembre 2018

UNIVERSITÉ PARIS-EST CRÉTEIL VAL DE MARNE 🔺 🗖

1/51

Non-stoichiometry in intermetallics

Thermoelectrics compounds

Ground state map of M-H

Outlooks & Conclusions

ICMPE: Institute of Chemistry & Materials Science, Paris-East

 \simeq 120 permanents + 50 non-permanents

▲□► ▲ 툴 ► 2/51

Ground state map of M-H

Outlooks & Conclusions

ICMPE: research on materials science

Synthesis, Structural and chemical characterization XRD, EPMA, SEM-FEG-EBSD, ICP-OES, TDS, ATG, PPMS,...

Ball-milling, SPS, melt spinning, induction and arc melting...

Multi-scale calculations

5 reseachers, 3 PhDs, 4 workstations, no assist GENCI since 2009: 1.400.000 h/year in 2018

> ▲□▶ ▲ 壹▶ 3/51

Non-stoichiometry in intermetallics

Thermoelectrics compounds

Ground state map of M-H

Outlooks & Conclusions

Multi-scale calculations

computation of phase diagram?

▲□▶ ▲≣▶ 4/51

in intermetallics Thermoelectrics compounds 00 000000 Ground state map of *M* – H

Outlooks & Conclusions

Enthalpy of formation

Ex: Cu-Mg system

[1] DFT from AFLOW database

calculation of heats of formation

Ground state map of M - H

Outlooks & Conclusions

Enthalpy of mixing

Thermoelectrics compounds

Ground state map of M - H

Outlooks & Conclusions

$$F(T \neq 0)$$

Ex: Laves $C15-Cu_2Mg$

Phonon calculation in harmonic, quasi-harmonic approximation:

∢□▶ 《臺▶ 7/51

Thermoelectrics compounds 000000

Ground state map of M-H

Outlooks & Conclusions

Calculation methods

- DFT PAW : VASP 5.4 (GGA, meta-GGA, mBJ)
- Phonopy 1.13 (Supercell approach)
- ATAT / MCSQS (CEM, SQS)

Introduction	Non-stoid
0000000	00000

on-stoichiometry in intermetallics

Thermoelectrics compounds 000000

Ground state map of M-H

Outlooks & Conclusions

Contents

Introduction

Non-stoichiometry in intermetallics

Thermoelectrics compounds

Ground state map of M-H

Outlooks & Conclusions

▲□► ▲≣► 9/51

Non-stoichiometry in intermetallics

Thermoelectrics compounds 000000

Ground state map of M-H

Outlooks & Conclusions

Contents

Introduction

Non-stoichiometry in intermetallics

Phase diagram with the Calphad method Topologically Closed-pack phases From binary to quaternary systems

Thermoelectrics compounds

Ground state map of M-H

Outlooks & Conclusions

□ ▶
▲ 壹 ▶ 10/51

Non-stoichiometry in intermetallics

Thermoelectrics compounds 000000

Ground state map of M-H

Outlooks & Conclusions

Non-stoichiometry of complex intermetallics

In **superalloys**, (*e.g.* Ni-based) refractory bcc element is added:

- improve the creep resistance at high temperature
- precipitation of brittle IMC phases

Ex: Os-Nb phase diagram

How can we predict IMC precipitation?

Non-stoichiometry in intermetallics

Thermoelectrics compounds

Ground state map of M-H

Outlooks & Conclusions

Modeling of phase diagram

The Calphad method (CALculation of PHAse Diagram) :

- based on Gibbs energies $G^{\varphi}(x,T,P)=H-T\cdot S$
- phases φ_i in equilibrium if $\mu_i = \left(\frac{\partial G}{\partial x_i}\right)_{P,T}$

Ground state map of M-H

Outlooks & Conclusions

Thermodynamic modeling with Calphad

Using the Compound Energy Formalism (CEF):

$$G^{\varphi} = {}^{\mathrm{srf}}G^{\varphi} + {}^{\mathrm{cnf}}G^{\varphi} + {}^{\mathrm{ex}}G^{\varphi} + {}^{\mathrm{phy}}G^{\varphi}$$

[3] B. Sundman and B. J. Ågren, J. Phys. Chem. Solids 42 (1981) 297.

(i) description of a solid solution (ex: A - B) :

•
$$\operatorname{srf} G^{\varphi} = x_A G_A^{\varphi} + x_B G_B^{\varphi}$$

•
$$\operatorname{cnf} G^{\varphi} = -T \cdot \operatorname{cnf} S^{\varphi} = -RT(x_A \ln x_A + x_B \ln x_B)$$

•
$$e^{ix}G^{\varphi} = x_A x_B L_{AB}$$
 , Où $L_{AB} = \sum_{i=0}^n {}^i L^{\varphi}_{A,B} (x_A - x_B)^i$

Ground state map of M-H

Outlooks & Conclusions

Thermodynamic modeling with Calphad

(ii) description of a non-stoichiometric compounds in (CEF)

The ${}^{\mathrm{srf}}G^{\varphi}$ is expressed regarding the crystallography of the φ phase.

As an example, the compound AB described by a full substitution model $(A,B):(A,B)_1$

 ${}^{\rm srf}G = y_A^1 y_A^2 G_{A:A}^0 + y_A^1 y_B^2 G_{A:B}^0 + y_B^1 y_A^2 G_{B:A}^0 + y_B^1 y_B^2 G_{B:B}^0$ Where each $G^0 \simeq \Delta H_f$ could be expressed by DFT.

<□ ▶
 < ≧ ▶ 14/51

Ground state map of M-H

Outlooks & Conclusions

An example: the Laves phase Cu₂Mg

Crystal structure:

Strukturbericht: *C*15, Pearson: cF24 Space group: $Fd\bar{3}m$ (227, o1) $a \simeq 7.05$ Å, 6 atoms in the primitive cell

Site	Wyc	x	y	z	CN
Cu	16d	$\frac{5}{8}$	$\frac{5}{8}$	$\frac{5}{8}$	12
Mg	8a	0	0	0	16

\Rightarrow DFT calculation of every end-members

C15: 2 sites, 2²=4 ordered binary configurations in the CEF

Non-stoichiometry in intermetallics

Thermoelectrics compounds

Ground state map of M-H

Outlooks & Conclusions

The Laves phase described by the (Cu,Mg)₁:(Cu,Mg)₂ model

Heat of formation of 2²=4 end-members at 0 K

< □ ▶
< Ξ ▶ 16/51

Non-stoichiometry in intermetallics

Thermoelectrics compounds

Ground state map of M-H

Outlooks & Conclusions

More complex structures: the χ - and σ -phase

Crystal structure of the χ -phase

lpha-Mn, $A12, I\bar{4}3m$, (217) $a \simeq 9$ Å, 58(29) atoms in 4 sites

Site	Wyc	x	y	z	CN
\mathcal{A}	2a	0	0	0	16
B					16
\mathcal{C}	$24g_{1}$	${\sim}0.36$	x	~ 0.03	13
\mathcal{D}	$24g_2$	${\sim}0.09$	x	\sim 0.28	12

In a binary system: 2⁴=16 different ordered configurations

Crystal structure of the σ -phases

 $\sigma\text{-CrFe},\,D8_b,\,P4_2/mnm$ (136) a \simeq 9Å, c \simeq 5Å, 30 atoms in 5 sites

Site	Wyc	x	y	z	CN
\mathcal{A}	2a	0	0	0	12
B	4f	\sim 0.39	x	0	15
\mathcal{C}		${\sim}0.46$	\sim 0.13	0	- 14
\mathcal{D}	$8i_2$	\sim 0.74	${\sim}0.07$	0	12
E	8j	\sim 0.18	x	\sim 0.25	14

In a binary system: 2⁵=32 different ordered configurations

[4] Joubert *et al.*, Prog. Mater. Sci. 54 (2009) [5] Joubert, Prog. Mater. Sci. 53 (2008) →

17/51

Ground state map of *M* – H

18/51

The σ -phase in a binary system, *e.g.* Mo–Re

(1) ΔH_{for} of every ordered compound: $2^5 = 32$ configurations (2) Estimation of the Gibbs energy neglecting the interaction between atoms of same lattice (Bragg Williams – Gorsky approximation): $G^{\sigma} = {}^{\mathrm{srf}}G^{\sigma} + {}^{\mathrm{cnf}}G^{\sigma} + {}^{\underline{\mathrm{srf}}}G^{\sigma}$

with ${}^{\mathrm{srf}}G^{\sigma} = \sum_{ijklm=\mathrm{Mo,Re}} \left[y_i^{(\mathcal{A})} y_j^{(\mathcal{B})} y_k^{(\mathcal{C})} y_l^{(\mathcal{D})} y_m^{(\mathcal{E})} \right] \times \Delta {}^{\mathrm{for}} H_{ijklm}^{0,\sigma}$ and ${}^{\mathrm{cnf}}G^{\sigma} = -R \times T \sum_s a^{(s)} \sum_{i=\mathrm{Mo,Re}} y_i^{(s)} \times \ln(y_i^{(s)})$

Non-stoichiometry in intermetallics

Thermoelectrics compounds

Ground state map of M-H

Outlooks & Conclusions

An ab initio binary phase diagram

(1) ΔH_{for} of every ordered compound of both χ and σ -phase (2) Estimation of the Gibbs energy in BWG approximation (3) phases diagram build from the common tangent rule

[6] Crivello et al. Inorg. Chem. (2013)

[7] Crivello et al. J. Phys.: Condens. Matter (2010)

▲ 글 ▶ 19/51

Non-stoichiometry in intermetallics

Thermoelectrics compounds 000000

Ground state map of M-H

Outlooks & Conclusions

An ternary system? e.g. Re-W-Zr

Systematic calculations

- 4 phases: χ (3⁴ = 81), σ (3⁵ = 243), C15, C14
- 3 solid solutions (fcc, bcc, hcp by SQS)

Sites occupation in the χ -phase:

Experiment occupancies obtained by joint refinement on 2 diffraction sets of different contrast

▲□ ▶
▲ 壹 ▶ 20/51

Non-stoichiometry in intermetallics

Thermoelectrics compounds

Ground state map of M - H

Outlooks & Conclusions

An ab initio ternary phase diagram

Similar agreement in other system: Mo-Ni-Re, Cr-Co-Re,...

[9] K. Yaqoob et al., Inorg. Chem. (2012)

[10] Joubert, Crivello et al., Applied Sciences (2015)

< □ ▶
< Ξ ▶ 21/51

Study of a quaternary system: Cr–Mo–Ni–Re

 $4^5 = 1024$ configurations ordered in σ phase Use of ZenGen code [11] Crivello *et al.*, Calphad (2015)

Computed with BWG approximation:

prediction of TCP phases precipitation

- BWA may works for complex IMC such as TCP (χ , σ ,...)
- not sufficient for more simple IMC such as Laves phases

22/51

Introduction Non-stoid

Non-stoichiometry in intermetallics

Thermoelectrics compounds

Ground state map of M-H

Outlooks & Conclusions

Contents

Introduction

Non-stoichiometry in intermetallics

Thermoelectrics compounds Fe₂VAI for thermoelectric application SQS and phonon calculations Thermodynamic modeling

Ground state map of M-H

Outlooks & Conclusions

↓
 ↓
 ≥
 23/51

Temperature phase transition for thermoelectric applications

The **thermoelectric effect** is the conversion of temperature differences to electric voltage (and vice versa) Evaluation of material with the **figure of merit**: $ZT = \frac{\alpha^2 T}{\alpha \lambda}$

Heusler type Fe₂VAI: potential candidate

- semi-metal, Pauli paramagnetic
- good electronic transport properties: $\frac{\alpha^2}{\rho} = 5 \text{ mW m}^{-1} \text{ K}^{-2}$
- but thermal conductivity (λ) is too large

Effect of temperature?

Fe₂VAI

Non-stoichiometry in intermetallics

Thermoelectrics compounds

Ground state map of M-H

Outlooks & Conclusions

25/51

Fe₂VAI: phase transition

experimental: DTA heating and cooling scan

Thermoelectrics compounds

Ground state map of M-H

Outlooks & Conclusions

Fe_2VAI : phase transition

theoritical work: what is the most stable phase? with temperature dependance?

two combined calculations

- SQS
- phonon

▲□▶ ▲≣▶ 26/51

Thermoelectrics compounds

Ground state map of M - H

Outlooks & Conclusions

Fe₂VAI: SQS+DFT results at 0 K

▲ ≣ ▶ 27/51

Non-stoichiometry in intermetallics

Thermoelectrics compounds

Ground state map of M - H

Outlooks & Conclusions

Fe₂VAI: phonon calculations

Calculations done with Phonopy code in harmonic approximation [12] Togo, Oba, Tanaka, PRB 78 (2008)

- SQS-*B*2: 64 atoms, 112 displ.
- SQS-A2: 32 atoms, 191 displ.

From the phonon dispersion curves, Helmholtz free energy:

$$F(T) = \frac{1}{2} \sum_{\mathbf{q},s} \hbar \omega(\mathbf{q},s) + k_B T \sum_{\mathbf{q},s} \ln \left[1 - \exp\left(-\frac{\hbar \omega(\mathbf{q},s)}{k_B T}\right) \right]$$
$$S = -\left(\frac{\partial F}{\partial T}\right)_V; \quad C_V = -T\left(\frac{\partial^2 F}{\partial T^2}\right)_V$$

▲ □ ▶
 ▲ 클 ▶ 28/51

Thermoelectrics compounds

Ground state map of M-H

Outlooks & Conclusions

Fe₂VAI: thermodynamic modeling

 $\Delta G^{\varphi}(x,T,P) = \Delta H - T \cdot \Delta S$

 \Rightarrow Prediction of the phase transitions $L2_1 \rightarrow B2 \rightarrow A2$ [13] Maier, Acta Mater. (2015)

▲□ ▶
▲ 壹 ▶ 29/51

Thermoelectrics compounds

Ground state map of M-H

Outlooks & Conclusions

Fe₂VAI: agreements

Neutron diffraction with temperature: order/disorder transitions [14] Maier, Acta Mater. (2015)

↓ □ ▶
↓
ま → 30/51

Thermoelectrics compounds 000000

Ground state map of M-H

Outlooks & Conclusions

Contents

Introduction

Non-stoichiometry in intermetallics

Thermoelectrics compounds

Ground state map of M-H

The hydrogen economy A ground state map design Results on 31 systems Vibrational contribution: application to isotopic effect

Outlooks & Conclusions

▲□ ▶
▲ 壹 ▶ 31/51

Ground state map of M - H

The hydrogen economy

Why hydrogen ?

- H is a renewable resource, very abundant (15% at. on Earth)
- H is a zero-emission fuel (when burned with oxygen)
- · H is associated to a high exothermic reaction (in mass unit)

$$H_2 + \frac{1}{2}O_2 \Leftrightarrow H_2O, +142MJ/kg$$

What are its limitations?

- H needs to be produced
- H needs to be stored

↓ □ ト
↓
ま → 32/51

Non-stoichiometry in intermetallics

Thermoelectrics compounds 000000

Ground state map of M - H

Outlooks & Conclusions

Hydrogen in the solid stored-state

4 liters of H is need to fed a fuel-cell for driving 400 km by car:

Metallic hydride

- presents high volumic density
- is safe (in opposition to the liquid or gas state)
- drives H with a tunable and reversible reaction

▲□▶ ▲≣▶ 33/51

Non-stoichiometry in intermetallics

Thermoelectrics compounds 000000

Ground state map of M - H

Outlooks & Conclusions

A complete investigation: Ni–H system

A combined methodologies approaches based on Calphad modelling:

- DFT + CEM : ${}^{ex}G^{\varphi}$
- DFT + phonon QHA : V(T, P)
- high pressure model: $V(T, P) = x + y \ln \left(\frac{B}{P^0}\right)$

[15] Bourgeois et al., J Phys Chem C, 119 (2015)

estimation of pressure phase diagram

▲□▶ ▲≣▶ 34/51

Non-stoichiometry in intermetallics

Thermoelectrics compounds 000000

Ground state map of M - H

Outlooks & Conclusions

Binary metal hydrogen M-H systems

Heat of formation of metallic hydride is governed by :

- the chemical nature of the host M element
- the crystal structure

▲□♪ ▲≡▶ ~~

Thermoelectrics compounds 000000

Ground state map of M - H

Outlooks & Conclusions

Ground state map of M-H

A systematic/screening investigation by calculation

- 31 binary metal hydrogen M-H systems
- 30 crystal structures of hydrides

Questions

- · Can we build a trustful thermodynamic database?
- May we can predict new hydride structure?
- What is the effect of the vibration? Application to the isotopic effect

Methodology

- DFT at 0 K (PAW, VASP, GGA-PBE, $E_{\text{cutoff}} = 800 \text{ eV}$ $\Rightarrow \Delta H_{\text{for}}(M \text{H})^{\varphi} = E(M \text{H})^{\varphi} - E(M)^{\text{SER}} - \frac{1}{2}E(\text{H}_2)^{\text{dimer}}$
- harmonic phonon calculation \Rightarrow ZPE, $S_{\rm vib}$

Non-stoichiometry in intermetallics

Thermoelectrics compounds 000000 Ground state map of M - H

Outlooks & Conclusions

31 binary metal hydrogen M-H systems

Selection of s- and d-elements

covers a large variety of

- crystal structures
- electronic structure types

▲□♪ ▲ 壹 ▶ 37/51

Non-stoichiometry in intermetallics

Thermoelectrics compounds 000000

Ground state map of M - H

Outlooks & Conclusions

30 crystal structures of binary hydrides

H/M	Proto.	P.S.	S.G.	Wyckoff P.	Site	M–H sys.
0.25	PdH _{0.25}	tl8	I4/mmm (139)	M: 4c, 4e, H: 2a	0	-
0.5	AuTe ₂	mC6	C2/m (12)	M:4i, H:2a	0	V
0.5	TiO ₂ -ana	tl12	$I4_{1} / amd$ (141)	M: 8e, H: 4a	0	Pd
0.5	Cdl ₂	hP3	P3m1 (164)	M: 2d, H: 1a	0	Tc
0.5	Ta ₂ H	oS6	C222 (21)	M: 4k, H: 2a	0	Та
0.75	PdH _{0.75}	tl8	I4/mmm (139)	M: 4c, 4e, H: 4d, 2b	0	-
0.8	PdH _{0.8}	tl10	I4/m (87)	M: 8h, 2a, H: 8h	0	Pd
1	NbH _{0.95}	oP8	Pnnn (48)	M: 4f, H: 2a, 2b	te	Nb, T i
1	PtS	tP4	$P4_{2}/mmc$ (131)	M: 4c, H: 2a, 2b	te	Zr, Ti
1	CsCl	cP2	Pm3m (221)	M: 1a, H: 1b	CN=4	Na, K, Rb
1	NaCl	cF8	$Fm\bar{3}m$ (225)	M: 1a, H: 1b	0	Li, Na, K, Rb, Ru, Co, Rh, Ni, Pd
1	ZnO	hP4	P63mc (186)	M: 2b, H: 2b	te	Cu
1	CrB	oS8	Cmcm (63)	M: 4c, H: 4c	CN=7	Cs
1	NiAs	hP2	$P6_3 / mmc$ (194)	M: 2c, H: 2a	0	Cr, Mn, Co
1	anti-NiAs	hP2	$P6_3 / mmc$ (194)	M: 2a, H: 2c	CN=6	-
1	FeH	hP14	$P6_3/mmc$ (194)	M: 2c, 2a H: 4f	0	Fe
1	BN-b	hP2	$P6_3/mmc$ (194)	M: 2c, H: 2d	tr	-
2	ReB ₂	hP6	$P6_3/mmc$ (194)	M: 2c, H: 4f	te	-
2	TiO ₂	tP6	$P4_2/mnm$ (136)	M: 2a, H: 4f	tr	Mg
2	CaF ₂	cF12	$Fm\bar{3}m$ (225)	M: 4a, H:8c	te	Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Rh
2	PdF_2	cP12	P a 3 (205)	M: 4a, H:8c	te	Mg
2	PbO ₂	oP12	Pbcn (60)	M: 4c, H: 8d	tr	Mg
2	ThH_2	tl6	I4/mmm (139)	M: 2a, H: 4d	te	Ti, Zr, Hf
2	Co ₂ Si	oP12	Pnma (62)	M: 4c, H: 4c	te/CN=5	Ca, Sr
3	AuSb ₃	cl8	Im3m (229)	M: 2a, H: 6b	CN=2	-
3	BiF ₃	cF16	$Fm\bar{3}m$ (225)	M: 4a, H: 4b, 8c	o, te	-
3	ReB ₃	hP8	$P6_3/mmc$ (194)	M: 2c, H: 2a, 4f	o, te	-
3	HoD3	hP24	P3c1 (165)	M: 6f, H: 12g, 4d, 2a	tri/CN=3	Y
3	NaH3	hP8	$P6_3 / mmc$ (194)	M: 2c, H: 2d, 4f	tr, te	-
3	Na ₃ Ås	hP8	$P6_{3}/mmc$ (194)	M: 2c, H: 2b, 4f	tr, te	Gd

▲□▶ ▲≣▶ 38/51

Non-stoichiometry in intermetallics

Thermoelectrics compounds 000000

Ground state map of M - H

Outlooks & Conclusions

30 crystal structures of binary hydrides

Thermoelectrics compounds 000000

Ground state map of M - H

Outlooks & Conclusions

40/51

Strong importance of the ZPE contribution!

agreements: NaCl structure stable for the 4 alkali metal hydrides, with very unstable di-hydrides **chemical bonds:** ionic bond, strong charge transfer ($Li^{+0.85}$, $Na^{+0.78}$, $K^{+0.75}$, $Rb^{+0.74}$): decreasing with the increase of the period, associated with the decreased of the hydride stability

<□ ▶
< Ξ ▶ 41/51

agreements: di-hydrides stable with correctly predicted structures, no-mono hydrides **chemical bonds:** important charge transfer (Mg^{+1.6}, Ca^{+1.4}, Sr^{+1.4}), highly exothermic formation for Ca and Sr

▲ □ ▶
▲ 클 ▶ 42/51

agreements: all hydrides stable with correctly predicted structures $(MH_{0.5} \text{ stable only for } M = V, \text{ no TaH}_2)$ **prediction:** monohydride VH, TaH₂ at 3 GPa

> ◀□▶ ◀콜▶ 43/51

Non-stoichiometry in intermetallics

Thermoelectrics compounds 000000

Ground state map of M - H

Outlooks & Conclusions

A systematic/screening investigation

 \Rightarrow similar chemical properties for the hydrides formed with elements of the same column (chemical bonds, crystal structures,...)

 \Rightarrow obtention of the ground state and assessment of the metastability

 \Rightarrow predicted structures in agreement with the experimental observations: prediction of higher hydrides TaH₂ (CaF₂), TcH, PdH₂ (Co₂Si), ZrH₃ (HoD₃), AgH (ZnO), TaH₂ at 3 GPa

[16] Bourgeois, Crivello et al. ACS Combinatorial Science (2017)

<□▶ <≣▶ 44/5

Non-stoichiometry in intermetallics

Thermoelectrics compounds

Ground state map of M-H **Outlooks & Conclusions**

Ex: Results on NiH (B1, NaCl)

$$F(V_0,T) = \underbrace{\frac{1}{2} \sum_{\mathbf{q},s} \hbar \omega(\mathbf{q},s)}_{\text{ZPE}} + k_B T \sum_{\mathbf{q},s} \ln \left[1 - \exp\left(-\frac{\hbar \omega(\mathbf{q},s)}{k_B T}\right) \right]$$

the ZPE contribution is not negligible for Metal-hydride systems!

< D > < ∃→ 45/51

where: $\Delta E_{vib} = E_{vib}(MX_y) - E_{vib}(M) - \frac{y}{2}E_{vib}(X_2^{dimer})$

definition:

 $\Delta E^{\mathrm{H},\mathrm{D}} = \left(E_{vib}(M\mathrm{H}_y) - \frac{y}{2}E_{vib}(\mathrm{H}_2) \right) - \left(E_{vib}(M\mathrm{D}_y) - \frac{y}{2}E_{vib}(\mathrm{D}_2) \right)$

<□ ▶ < 壹 ▶ 46/51

Ground state map of M - H

Outlooks & Conclusions

Isotope effect

 \Rightarrow prediction of normal or inverse stabilization

H/D: Modification of the ground state possible

[17] Bourgeois, Crivello et al., J. Phys: Cond Mater 2018

<□ ▶
< \(\bar{\bar{2}}\) ▶
47/51

Non-stoichiometry in intermetallics

Thermoelectrics compounds

Ground state map of M-H

Outlooks & Conclusions

Outlook 1: Screening of new thermoelectric compounds

[18] Barreteau, Crivello et al., J. Comput. Mater. 2019

Non-stoichiometry in intermetallics

Thermoelectrics compounds

Ground state map of M - H

Outlooks & Conclusions

Outlook 2: Machine learning for metal hydrides?

▲□▶ ▲≣▶ 49/51 Introduction Non-st

Non-stoichiometry in intermetallics

Thermoelectrics compounds 000000

Ground state map of M-H

Outlooks & Conclusions

Conclusions

Thermodynamic modeling assisted by massive first principles calculations

Type of calculations

- large number of small DFT calculations: ~ 30 atoms/cell
- phonon calculations: large number of asymmetric supercell
- magnetism for alloys: collinear and non-collinear
- oxydes & thermoelectrics: use of meta-GGA and mBJ functionals

Continuous Help in VASP needs: thanks the CINES Support

- help for choosing the NPAR and KPAR paramaters
- help for number of nodes
- guide for typical errors

-

Non-stoichiometry in intermetallics

Thermoelectrics compounds 000000 Ground state map of M-H

Outlooks & Conclusions

Advert & Acknowledgments

https://ai4mater-sci.sciencesconf.org/

LABEX MMCD

ANR

