

Fonctions Optiques pour les Technologies de l'informatiON

Optoelectronic properties of Halide Perovskite: needs for extremely demanding high performance computing

L. Pedesseau¹, M. Kepenekian², B. Traore¹, C. Katan², J. Even¹

(1) Univ Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, Rennes F-35000, France (2) Univ Rennes, ENSCR, CNRS, ISCR - UMR 6226, Rennes F-35000, France

Chercheurs dans les domaines de la Chimie et Physique

(Workshop CINES)

13th September

Best research-cell efficiencies (NREL) chart (non-concentrator)

Spin-Orbit Coupling (SOC)

Electronic band structures of GaAs (left, SG: F-43m) and MAPbI₃ (right, SG: Pnma) materials without (blue) and with (red) SOC. The energy of the valence band maximum is set at zero and the SOC effect is marked in red as Δ_{SOC} .

4

Phonon dispersion of 2H-PbI₂ material without (blue) and with (red) SOC

J Even et al. J. Phys. Chem. Let. 4, 2999, 2013 (left) @HDR Pedesseau, 2019 (right)

The disadvantage of the SOC is the computational cost about double and the memory is increasing around 5% compared to a LDA/GGA functional.

@HDR Pedesseau, 2019

dispersion

(nonpolar)

"van der

Waals"

~0.01eV

Van der Waals bonding

Table 1: Comparison of the chemical bond such as covalent, metallic, ionic, hydrogen and van der Waals,

5

The disadvantage of the van der Waals corrections is the computational cost from 1.5 to 5 compared to a LDA/GGA functional

Induced Dipole

DFT+VDW

Temporary Dipole

i) Band gap problem/band structure accuracy

Band gaps for the DFT and HSE03¹ functional with μ =0.3Å⁻¹. The latter yields consistently improved band gaps. Source (reference²)

1 Heyd, J. et al. J. Chem. Phys., 8207, 2003 2 Freysoldt, C. et al. Rev. Mod. Phys. 86, 253, 2014

Band gap energies calculated in PBE including SOC effect plus HSE corrections as a function of μ , in Å⁻¹, the range separation parameter for CsPbI₃ and MAPbI₃ materials μ =0.2(0.3) is for HSE06(HSE03) respectively. @HDR Pedesseau, 2019

The disadvantage of the hybrid functional is the computational cost from 10 to 100 and the memory demanding compared to a LDA/GGA functional.

ii) Band gap problem/band structure accuracy

DFT and scGW band gaps with attractive electron-hole interaction (vertex corrections in W). Source (reference¹).

1 M Shishkin, et al. Phys. Rev. Lett. 99, 246403, 2007

In reality, this method is so demanding that it is very challenging to use it for more than 250 occupied and unoccupied bands and a dozen of k points in the Brillouin zone.

The disadvantage of the scGW corrections is the computational cost from 50 to 500 for each step and the memory demanding becomes huge compared to a LDA/GGA functional and even to hybrid functionals.

fotor

Comparison of the basic parameter of the simulation such as the total number of cpu, the memory, the execution time, and the gap energy for each method^{*} applied to the 2H-Pbl₂ material.

DFT	Total cpus	Memory used (Mb)	Time (s)	$E_{gap}^{A}(eV)$
PBE	144	189.3	12.1	1.74
PBE+SOC	144	198.0	24.4	1.10
PBE+SOC+HSE06	144	373.8	6247.3	1.87
PBE+SOC+sc-GW	456	3418.5	119940.4	2.52 (after 6steps)

* Monkhorst-Pack grid (6x6x4), cut-off energy 500eV. From experimental measurement¹, the band gap energy E_{gap}^{A} = 2.32eV, at room temperature and 2.55 eV at 4 K.

1 Matuchova, M. et al J. Mater. Sci. Mater. Electron. 20, 289, 2009

T~5000s T~300s T~3000s T~200s T~3000s T~150s T~2000s T~60s

@HDR Pedesseau, 2019

laurent.pedesseau@insa-rennes.fr

1st PARAMETER, NPAR

NPAR : number of bands which divided NBANDS (adjusted NBANDS).

2nd PARAMETER, KPAR

KPAR : number of k-points which divided the total number of k-points.

The ratio has to be in between 6 to 10 to be very efficient! *In practice, the ratio has to be 2 or 4 to be very efficient!*

Total number of cores: TNC=KPAR*NPAR, Total number of nodes: TNN =TNC/24

UNUSUAL job: VASP on OCCIGEN, CINES

OCCIGEN, 1 node : 128 Go/24cores= **5.3Go per core**

- vasp insufficient virtual memory:

@HDR Pedesseau, 2019

TNC=KPAR*NPAR, Total number of nodes: TNN =TNC/(24*a)

(pseudo) Cubic Hybrid Perovskites

11

iaarenerpeacoocaa@moa_renneom

<u>Our approach : adapt solid state physics concepts to hybrid Perovskites</u>

- Optical transitions due to Bloch states localized within the inorganic lattice
- Giant spin-orbit effect on the conduction band (CB)
- Strain effect and loss of inversion symmetry (Rashba effect)

J Even et al PRB 86, 205301, 2012 J Even et al J Phys. Chem. C 118, 11566, 2014

- Excitonic effect treated by perturbation : Wannier exciton

2D Ruddlesden-Popper perovskite solar cells

H. Tsai *et al. Nature* (2016) 2D RP perovskite for solar cells <u>Stability is improved</u>

2D Ruddlesden-Popper perovskite solar cells

Flipped structure enhances carrier transport \rightarrow better efficiency

Hybrid Perovskites : 2D / Quantum confinement4

D. Mitzi et al. IBM J. RES. & DEV. 2001

laurent.pedesseau@insa-rennes.fr

Hybrid Dion-Jacobson 2D Lead Iodide Perovskites

foton

Hybrid Dion-Jacobson 2D Lead Iodide Perovskites

Exp. data

L. Mao et al. JACS, 2018

Simulation

- Band gap energy decreases when N increases

Hybrid Perovskites: 2D and 3D materials

A distorted (Cs)₂PbI₄ reference structure with axial d^{ax}_{Pb-I} and equatorial d^{eq}_{Pb-I} distances fixed to 3.18 Å

17

Schematic representations of the in-plane projection of the M–M–X angle β and the δ angle chosen to characterize the in-plane and out-of-plane octahedral tilting.

Dielectric confinement: from 3D to 2D HOPs

Schematic representation of the charge density response to E

18

Even et al., *PCCP* 16, 2014 Sapori et al. *Nanoscale*, 8, 2016

Dielectric confinement: from 3D to 2D HOPs

2D HOP: intercalation effect of I_2

Intercalation of I_2 increases the organic dielectric part

2D HOP: intercalation effect of I_2

M. Smith et al. Chemical science 8 (3), 1960-1968, 2017

22

Intercalation of I₂ dramatically modifies the dielectric function orthogonal to the layers.

Hybrid Perovskites for spintronics ?

Beyond DFT \rightarrow Tight-Binding modeling

A Marronnier et al. ACSnano 12, 3477, 2018

- i) Cubic phase at high temperature (T > 360°C)
- ii) Orthorhombic yellow phase at room temperature, very hard to avoid

(a–c) Computed electronic band structures using the TB model (solid lines) and at the scGW+SOC level of theory (symbols) for the experimentally determined crystal structures

Parameterized tight-binding with scGW

Beyond DFT \rightarrow Tight-Binding modeling

A Marronnier et al. ACSnano 12, 3477, 2018

CsPbI₃ results

Parameterized tight-binding with scGW

• Importance of dielectric confinement :

layered HOP (contrast organic/inorganic layers) 2D/3D HOP nanoplatelets

- Contributions of surface states in HOP
- Intercalation effect
- Band gap decreases with increasing number N of inorganic layers

- Quantum confinement effects still present at N = 5
- Dielectric confinement almost disappears from N=4
- Hence the larger exciton binding energies for these
 2D systems even at room temperature is probably

due to the quantum confinement effect

Acknowledgments

Stanford Univ.

H. Karunadasa

Rice Univ.

A. Mohite

Los Alamos National Laboratory

S.Tretiak

W. Nie

M. G. Kanatzidis

M. Smith

J.-C. Blancon

A. Neukirch

H. Tsai

C. C. Stoumpos

Thank you for your attention

J. Phys. Chem. C, **2015**, *119* (19), pp 10161–10177

J Phys Chem Lett, 2013, 4 (17), pp 2999–3005

ACS Nano, **2015**, 9 (12), pp 11557–11567

