

Training @ CINES: How to make the most of supercomputing technologies MPI and OpenMP for beginners

Johanne Charpentier & Gabriel Hautreux charpentier@cines.fr hautreux@cines.fr

Hybrid MPI+OpenMP

OCCIGEN REACHED

RANK 26 IN THE LAST

TOP 500

Intel Haswell Xeon technology

Bi sockets nodes

12 cores per socket

Infiniband FDR 14 interconnect

LUSTRE storage system

Th. peak performance: 2,1 PFlop/s Achieved performance: 1,63 PFlop/s ONLY

What is a CPU?

The CPU (for central processing unit) is the smallest unit in a cluster

What does a CPU do?

- Interprete instructions
- Retrieves data from the RAM
- Compute using those data
- Send back the information to the RAM
- Now you have your output and can process your results

What is a socket?

The socket is a group of CPU and represents a processor (as the ones you can buy)

What can we do with a socket?

- Use multiple cores at the same time that can acces the same memory (this memory is called the L3 Cache)
- Increase the speed of the code by using parallelism
- Shared memory => OpenMP

What is a node?

The node is multiple sockets that share the same physical memory

What can we say about a node?

- Multiple sockets
- Share the same memory space but with a loss of performance if going through the QPI Link
- More or less shared memory
- => MPI and/or OpenMP

Node connexion ?

The nodes are stored in racks and linked together using infiniband technology

How are the nodes connected?

- Nodes are stored in racks
- Each node has an infiniband connection to the switch
- Communications are handled through the switch
- No shared memory
 - => MPI Only

Using a cluster

To use the cluster, you have to log at the front end (login node) and run your code using a job scheduler which will dispatch the MPI processes among the nodes

How to use the cluster?

- Now that you know everything, building a code for High Performance
 Computing technologies becomes straightforward
- Aim of this course: make you use both MPI + OpenMP to make the most of HPC architectures

Computing the CPU's peak performance implies no bandwidth bottleneck

Peak performance = frequency x #operations per CPU cycle

Haswell: 2 FMA AVX ('+' AND 'x' on 4 doubles) per cycle => 16ops

Peak CPU: 2.6Ghz x 16 = 41.6 Gflop/s

Peak Socket(12 CPUs) = 499.2 Gflop/s

Peak Node (2 sockets = 998.4 Gflop/s

Peak Occigen(2106 nodes) = 2,102,630.2 Gflop/s

Bandwidth peak performance computation is easy but not well-known

```
Peak performance =
```

freq x #data transfers/clock x Bus width x #interfaces

Frequency: DDR4 => 2133MhZ

DDR: Double Data Rate => 2 data transfers/cycle

Bus width = 8B

2 ports per socket = 2 interfaces

Peak per socket = $2133 \times 2 \times 8 \times 2 = 68,256 \text{ GB/s}$

Best use of CPU

CPUS on one socket access to the same memory => Bandwidth limitations

How to use the bandwidth ?

- Feed your CPUs efficiently
- Give them as less data as possible
- Make those data as reusable as possible
- Everyone has to be fed using the same pipe
- People prefer macaroon

Best use of CPU

CPUS on one socket access to the same memory => Bandwidth limitations

How to use the bandwidth ?

- Feed your CPUs efficiently
- Give them as less data as possible
- Make those data as reusable as possible
- Everyone has to be fed using the same pipe
- People prefer macaroon

Let's visit Occigen!