
Training @ CINES:

OpenMP

Johanne Charpentier & Gabriel Hautreux
 charpentier@cines.fr hautreux@cines.fr

• Support C/C++ and Fortran

• Uses the thread fork/join
model

• Scalable on UMA and
NUMA architectures
(Shared memory model)

• Compiler directives

• Environment variables

OpenMP is an API for shared memory application

Features

• Include the OpenMP header (for C/C++)

#include<omp.h>
• Add some OpenMP directives
• Uses the right compiler option:

Intel: -openmp
Gnu : -fopenmp

• Set your environment variable:
OMP_NUM_THREADS
to define the number of threads you want to use
(default is the number of core available) Your code is
now using OpenMP

Compiling with OpenMP is straightforward

OpenMP can be used with environment variables

• OpenMP provides functions
such as:

- omp_set_num_threads()

- omp_get_num_threads()

- omp_get_max_threads()

- …

Have a look at the OpenMP
refcard for more funtionalities!
(http://openmp.org/mp-documents/OpenMP-4.0-C.pdf)

Those value can also be set inside the code

OpenMP implementation is based on compiler directives

Fortran: directive syntax

$!OMP DIRECTIVE [CLAUSES(variables, schedule,…),…]

« execute parallel region »

$!OMP END DIRECTIVE

C/C++: directive (pragma) syntax

#pragma omp directive [clauses(variables, schedule,…),…]

{

« execute parallel region »

}

How would you do to parallelise your code?

How would you do to parallelise your code?

• Divide arrays computation between all the
threads ?

• Make different threads compute different
things ?

• Define a pool of things to do and perform it
ASAP ?

How would you do to parallelise your code?

• Divide arrays computation between all the
threads ?

• Make different threads compute different
things ?

• Define a pool of things to do and perform it
ASAP ?

A parallel region launches threads

{

 printf(« HelloWorld! »);

}

This code will have the following output:

HelloWorld!

HelloWorld!

HelloWorld!

HelloWorld!

HelloWorld!

HelloWorld!

…

You can use as many OpenMP
directives as you want

inside a parallel region!

Serial version Parallel version

Parallelise compute intensive loops

for(i=0;i<n;i++)

{

 for(j=0;j<n;j++)

 {

 a[i][j]=b[i][j]

 +c[i][j]*d[j][i];

 }

}

for(i=0;i<n;i++)

{

 for(j=0;j<n;j++)

 {

 a[i][j]=b[i][j]

 +c[i][j]*d[j][i];

 }

}

Serial

Parallel

A = B + C x D

Why should we never parallelize the inner loop?

for(i=0;i<n;i++)

{

 for(j=0;j<n;j++)

 {

 a[i][j]=b[i}[j]

 +c[i][j]*d[j][i];

 }

}

Why should we never parallelize the inner loop?

for(i=0;i<n;i++)

{

 for(j=0;j<n;j++)

 {

 a[i][j]=b[i}[j]

 +c[i][j]*d[j][i];

 }

}

Huge overhead due to thread creation/destruction!

Serial version Parallel version

Parallelise non dependant parts of your code

for(i=0;i<n;i++)

{

 a[i]=b[i]*f(i);

}

for(i=0;i<n;i++)

{

 c[i]=g(b[i]);

}

{

 for(i=0;i<n;i++)

 {

 a[i]=b[i]*f(i);

 }

 for(i=0;i<n;i++)

 {

 c[i]=g(b[i]);

 }

}

Serial version Parallel version

Enable some parts to be computed by only one thread

for(i=0;i<n;i++)

{

 a[i]=b[i]*c(i);

}

printf(« Switching a & c »);

 a <-> c ;

for(i=0;i<n;i++)

{

 c[i]=b[i]*a[i];

}

{

for(i=0;i<n;i++)

 a[i]=b[i]*c(i);

printf(« Switching a & c »);

 a <-> c ;

}

for(i=0;i<n;i++)

 c[i]=b[i]*a[i];

}

Close to sections, but creates a pool of non dependant tasks

{

 {

 for(task = 0; task < nTask; ++task)

 {

 range = task;

 {

 myFunction(range);

 }

 }

 }

}

join join join

fork fork fork

F
O
R

SEC
TIO
NS

T
A
S
K

Variables within parallel region can be

used in several different ways

• PRIVATE

• SHARED

• DEFAULT

• FIRSTPRIVATE

• LASTPRIVATE

• COPYIN

• COPYPRIVATE

• REDUCTION

Many options for variable scopes

Variables in Private are private to each thread

{

 rank = omp_get_thread_num ();

 printf(« I am thread number: %d », rank);

}

This code will have the following output
(for 4 threads):

I am thread number: 1

I am thread number: 2

I am thread number: 3

I am thread number: 4

If rank was not private, you could have
had (for instance):

I am thread number: 2

I am thread number: 2

I am thread number: 2

I am thread number: 1

Variables in shared are shared by all threads

Int b = 10;

{

 rank = omp_get_thread_num ();

 printf(« I am thread number: %d, b= %d », rank);

}

This code will have the following output
(for 4 threads):

I am thread number: 1, b=10

I am thread number: 2, b=10

I am thread number: 3, b=10

I am thread number: 4, b=10

If b was not defined as shared, it still
would have been shared.
In fact, default is shared.
You can change the default by adding
the clause:
- default(private)

- default(none)

Firstprivate are private variables with their initial values

Int b = 10;

{

 rank = omp_get_thread_num ();

 printf(« I am thread number: %d, b= %d », rank);

}

This code will have the following output
(for 4 threads):

I am thread number: 1, b=10

I am thread number: 2, b=10

I am thread number: 3, b=10

I am thread number: 4, b=10

If b was defined as private, the output
would be:

I am thread number: 1, b=0

I am thread number: 2, b=0

I am thread number: 3, b=0

I am thread number: 4, b=0

Reduction will perform an operation at the end of a region

for(i=0;i<n;i++)

{

 a[i]=b[i]*c[i];

 product*=a[i];

}

printf(« the product of the elts of a is: %d, product);

x is a scalar variable in the list
expr is a scalar expression that does not reference x
op is not overloaded, and is one of +, *, -, /, &, ^, |, &&, ||
binop is not overloaded, and is one of +, *, -, /, &, ^, |

x = x op expr
x = expr op x
x binop = expr

The region is only executed by the master thread

{

 printf(« I am the master thread »);

 printf(« I am a slave »);

}

Only the master thread will write:
I am the master thread

Wait for all the threads to reach the barrier to continue

{

 if(omp_get_num_thread())=1

 b=10;

 if(omp_get_num_threads())=0

 a=5;

 printf(« a=%d,b=%d »,a,b);

}

With the barrier, the output is:
 a=5, b=10

Without the barrier, the output is random
 a= ?, b= ?

Critical section is performed by one thread at a time

int b=0,c=1;

{ int a=10;

 {

 b=b+a;

 c=c*a;

 }

}

 printf(« a=%d, b=%d);

With the critical, the output is:
 b=30, c=1000

Critical does not include any implicit barrier

int b=0,c=1;

{ int a=10;

 b=b+a;

 c=c*a;

}

 printf(« a=%d, b=%d);

x is a scalar variable in the list
expr is a scalar expression that does not reference x
op is not overloaded, and is one of +, *, -, /, &, ^, |, &&, ||
binop is not overloaded, and is one of +, *, -, /, &, ^, |

x = x op expr
x = expr op x
x binop = expr

Atomic section is performed by one thread at a time

A lot of other features are available in OpenMP

• Nested parallelism

• Offloading ? (in future releases

of the compilers)

• Threads binding

• Stack size per thread definition

• …

Here are some OpenMP features

Use KMP_AFFINITY to define your binding options

11 10 9 8 7 6

0 1 2 3 4 5

• Threads are as close as
possible (compact)

• There is no offset (0)

• The first thread is binded to
CPU number 0

• For OMP_NUM_THREADS=4
we have the following
binding

KMP_AFFINITY=compact,0,0

1st thread is binded to cpu 0

11 10 9 8 7 6

0 1 2 3 4 5

• Threads are as close as
possible (compact)

• There is no offset (0)

• The first thread is binded to
CPU number 0

• For OMP_NUM_THREADS=4
we have the following
binding

KMP_AFFINITY=compact,0,0

2nd thread is binded to cpu 1

11 10 9 8 7 6

0 1 2 3 4 5

• Threads are as close as
possible (compact)

• There is no offset (0)

• The first thread is binded to
CPU number 0

• For OMP_NUM_THREADS=4
we have the following
binding

KMP_AFFINITY=compact,0,0

3rd and 4th thread are binded to cpus 2 and 3

11 10 9 8 7 6

0 1 2 3 4 5

• Threads are as close as
possible (compact)

• There is no offset (0)

• The first thread is binded to
CPU number 0

• For OMP_NUM_THREADS=4
we have the following
binding

KMP_AFFINITY=compact,0,0

Use KMP_AFFINITY to define your binding options

11 10 9 8 7 6

0 1 2 3 4 5

• Threads are scattered
among sockets

• There is no offset (0)

• The first thread is binded to
CPU number 0

• For OMP_NUM_THREADS=4
we have the following
binding

KMP_AFFINITY=scatter,0,0

1st thread is binded to cpu 0

11 10 9 8 7 6

0 1 2 3 4 5

• Threads are scattered
among sockets

• There is no offset (0)

• The first thread is binded to
CPU number 0

• For OMP_NUM_THREADS=4
we have the following
binding

KMP_AFFINITY=scatter,0,0

2nd thread is binded to cpu 6

11 10 9 8 7 6

0 1 2 3 4 5

• Threads are scattered
among sockets

• There is no offset (0)

• The first thread is binded to
CPU number 0

• For OMP_NUM_THREADS=4
we have the following
binding

KMP_AFFINITY=scatter,0,0

3rd thread is binded to cpu 1

11 10 9 8 7 6

0 1 2 3 4 5

• Threads are scattered
among sockets

• There is no offset (0)

• The first thread is binded to
CPU number 0

• For OMP_NUM_THREADS=4
we have the following
binding

KMP_AFFINITY=scatter,0,0

4th thread is binded to cpu 7

11 10 9 8 7 6

0 1 2 3 4 5

• Threads are scattered
among sockets

• There is no offset (0)

• The first thread is binded to
CPU number 0

• For OMP_NUM_THREADS=4
we have the following
binding

KMP_AFFINITY=scatter,0,0

Use KMP_AFFINITY to define your binding options

11 10 9 8 7 6

0 1 2 3 4 5

• Threads are as close as
possible (compact)

• There is an offest of 1

• The first thread is binded to
CPU number 2

• For OMP_NUM_THREADS=4
we have the following
binding

KMP_AFFINITY=compact,1,2

1st thread is binded to cpu 2

11 10 9 8 7 6

0 1 2 3 4 5

• Threads are as close as
possible (compact)

• There is an offest of 1

• The first thread is binded to
CPU number 2

• For OMP_NUM_THREADS=4
we have the following
binding

KMP_AFFINITY=compact,1,2

1st thread is binded to cpu 2

11 10 9 8 7 6

0 1 2 3 4 5

• Threads are as close as
possible (compact)

• There is an offest of 1

• The first thread is binded to
CPU number 2

• For OMP_NUM_THREADS=4
we have the following
binding

KMP_AFFINITY=compact,1,2

2nd thread is binded to cpu 4

11 10 9 8 7 6

0 1 2 3 4 5

• Threads are as close as
possible (compact)

• There is an offest of 1

• The first thread is binded to
CPU number 2

• For OMP_NUM_THREADS=4
we have the following
binding

KMP_AFFINITY=compact,1,2

3rd thread is binded to cpu 6

11 10 9 8 7 6

0 1 2 3 4 5

• Threads are as close as
possible (compact)

• There is an offest of 1

• The first thread is binded to
CPU number 2

• For OMP_NUM_THREADS=4
we have the following
binding

KMP_AFFINITY=compact,1,2

4th thread is binded to cpu 8

11 10 9 8 7 6

0 1 2 3 4 5

• Threads are as close as
possible (compact)

• There is an offest of 1

• The first thread is binded to
CPU number 2

• For OMP_NUM_THREADS=4
we have the following
binding

KMP_AFFINITY=compact,1,2

Have a look at the exercise sheet!

• https://computing.llnl.gov/tutorials/openMP/

In my opinion one of the best OpenMP tutorial

• OpenMP quick reference guide

https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/

