Training @ CINES:
OpenMP

Johanne Charpentier & Gabriel Hautreux
charpentier@cines.fr hautreux@cines.fr

OPENMP ENVIRONMENT

WORKSHARE DIRECTIVES
) VARIABLES SCOPE
SYNCHRONIZATION

OTHER FEATURES

OPENMP ENVIRONMENT

WORKSHARE DIRECTIVES
) VARIABLES SCOPE
SYNCHRONIZATION

OTHER FEATURES

inesm. \What is OpeniVIP?

v- H.J-

OpenMP is an API for shared memory application J

e Support C/C++ and Fortran
e Uses the thread fork/join

Bus Interconnect

model
e Scalable on UMA and
| NUMA architectures
— o /- S — (Shared memory model)
e . el threads .] _
 trass | ' Compiler directives
parallel region parallel region parallel region L EnVironment Va riables

/
-— - - P

Compiling with OpenMP is straightforward

* Include the OpenMP header (for C/C++)
#tinclude<omp.h>

e Add some OpenMP directives

e Uses the right compiler option:
Intel: -openmp
Gnu : -fopenmp

e Set your environment variable:
OMP_NUM_THREADS
to define the number of threads you want to use
(default is the number of core available) Your code is/

now using OpenMP

ES TG Environment

OpenMP can be used with environment variables J

lThose value can also be set inside the code |

Export
omMP

A * OpenMP provides functions
static / such as:

.

- omp_set_num_threads()
- omp_get num_threads()
- omp_get _max_threads()

Export \ . - N
OMP_ e A/ A =
DYNAMIC |

e : '/ Have a look at the OpenMP
- ' refcard for more funtionalities!

(http://openmp.org/mp-documents/OpenMP-4.0-C.pdf)

1.

ectives
—n'\

/iNES 101 .
Centre Informatique National N
de |'Enseignement Supérieur

I_—l.

OpenMP implementation is based on compiler directives

SI'OMP DIRECTIVE [CLAUSES (variables, schedule,..),..] S~
« execute parallel region »
S'OMP END DIRECTIVE

C/C++: directive (pragma) syntax

#ipragma omp directive [clauses (variables, schedule,..),..] S~

{

« execute parallel region »

}

OPENMP ENVIRONMENT

WORKSHARE DIRECTIVES
) VARIABLES SCOPE
SYNCHRONIZATION

OTHER FEATURES

How would you do to parallelise your code?

INES T5T Parallelisim
How would you do to parallelise your code? J
+ Divide arrays computation between all the
threads?

- Make different threads compute different
things?

* Define a pool of things to do and perform it
ASAP?

_@

INES T Paralle

How would you do to parallelise your code?

+ Divide arrays computation .between all the
threads?

- Make difierent. thread..._ompute .ditferent
things?

* Define a pool of-tnings to do and perform it
ASAP?

GNEsE[" Parallel Region

o de l'Enseignement Supérieur

L A parallel region launches threads J

#pragma omp parallel

{
printf (« HelloWorld! »);

}
=

This code will have the following output:

HelloWorld!

HelloWorld! You can use as many OpenMP
HelloWorld! directives as you want

HelloWorld! inside a parallel region!
HelloWorld!

HelloWorld!

inesm OpenlVIP for loops

L

Parallelise compute intensive loops

Serial version

for (i=0;1i<n;i++)
{
for (7=0; j<n; j++)

alil[3]1=b[1][]]
[

tel1] [J]*d[3][1];

Parallel version

#pragma omp parallel for
for (i=0;1i<n;i++)
{

for (7j=0; j<n; J++)

al1][J]=b[1]
tcl1] (71"

J]
[J1[1]7

[
d

Serial

Parallel

Centre Informatique National |

Goues = OpenMIP for loops

- de I'Enseignement Supérieur

Why should we never parallelize the inner loop?

for (i=0;i<n;i++)
{
#pragma omp parallel for
for (7=0; j<n; j++)
ali][J]I=b[1}[7]
j1*d[J1 1]

9(0

Centre | z uemt
dd‘t

@NE OpenMIP for loops

Why should we never parallelize the inner loop?

for (i=0;i<n;i++)
{
#pragma omp parallel for
for (7=0; j<n; j++)
ali][J]I=b[1}[7]
j1*d[J1 1]

Huge overhead due to thread creation/destruction!

() A

E—--

/J
l

)

(—(.

»

Parallelise non dependant parts of your code

Serial version

for (1i=0;i<n;i++)
{

ali]=b[1]*f (1)
}

for (i=0;i<n;i++)

Parallel version

#pragma omp parallel sections
{
#pragma omp section
for (i=0;i<n;i++)
{
ali]=b[1]*f(1);
}
#pragma omp section
for (1=0; i<n;i++)
{
cli]=g(b[i]);
}

inesm Ope

Centre Informatique National
de I'Enseignement Supérieur

eniVIP ¢

single

Enable some parts to be computed by only one thread

L

Serial version
for (i=0;i<n;i++)

alil=bl1]*c(1);

printf (« Switching a & ¢ »);

a <-> ¢ ;
for (i=0;1i<n;i++)

cli]=bl[i]*alll;

Parallel version

#pragma omp parallel

{

#pragma omp for

for (i=0;i<n;i++)
ali]=b[1]*c(1);

#¥pragma omp single

{

printf (« Switching a & ¢ »);
a <-> c ;

}

#pragma omp for

for (i=0;1i<n;i++)
cli]=bli]*a[1i];

“n
(e

INES 71 Bonus: ta

<S

"CRC)

Close to sections, but creates a pool of non dependant tasks J

L

#pragma omp parallel
{
#pragma omp single
{
for (task = 0; task < nTask; ++task)
{
range = task;
#pragma omp task firstprivate (range)
{
myFunction (range) ;

}

N

OPENMP ENVIRONMENT

WORKSHARE DIRECTIVES
| VARIABLES SCOPE

SYNCHRONIZATION

OTHER FEATURES

esm Variables Scope

Variables within parallel region can be J

L used in several different ways

+ PRIVATE
Shared(b) e SHARED
» DEFAULT
L * FIRSTPRIVATE

#pragma\bmp parallel * LASTPRIVATE
for private(i,j) shared(b) e COPYIN
* COPYPRIVATE
 REDUCTION

)

e clause

/

l

(

Centre Informatique National -
de |'Enseignement Supérieur

@Esﬁ Brivate

Variables in Private are private to each thread

#pragma omp parallel private (rank)
{
rank = omp get thread num ();
printf(« I am thread number: $d », rank);

}

=\

This code will havethe following output If rank was not private, you could have
(for 4 threads): had (for instance):

I am thread number: 1 I am thread number: 2

I am thread number: 2 I am thread number: 2

I am thread number: 3 I am thread number: 2

I am thread number: 4 I am thread number: 1

A <
e

@NESE" P

Centre Informatique National
de |'Enseignement Supérieur

Variables in shared are shared by all threads

Int b = 10;
fpragma omp parallel private (rank) shared(b)
{

rank = omp get thread num ();
printf (« I am thread number: %d, b= %d », rank);

R\

This code will havethe following output If b was not defined as shared, it still
(for 4 threads): would have been shared.

In fact, defaultis shared.
I am thread number: 1, b=10 You can change the default by adding
I am thread number: 2, b=10 the clause:
I am thread number: 3, b=10 - default(private)
I am thread number: 4, b=10

\ "‘Kdefault(none)

lE e
Q)
(o
([
@
(ol
c
(¥

Guesm First Y e
w..,m.’f% v S e o

Firstprivate are private variables with their initial values

Int b = 10;
fpragma omp parallel private(rank) firstprivate (b)
{

rank = omp get thread num ();
printf (« I am thread number: %d, b= %d », rank);

R\

This code will havethe following output If b was defined as private, the output
(for 4 threads): would be:

I am thread number: 1, b=10 I am thread number: 1, b=0
I am thread number: 2, b=10 I am thread number: 2, b=0
I am thread number: 3, b=10 I am thread number: 3, b=0
I am thread number: 4, b=10 I am thread number: 4, b=0

A <
e

A

INES i

Centre Informatique National -
de |'Enseignement Supérieur

20
(D)
(@
(C
(@)
=,
©

Reduction will perform an operation at the end of a region

#pragma omp parallel for reduction (*:product)
for (i=0;i<n;i++)
{

alil=b[1]*c[i];

product*=ali];

}

printf (« the product of the elts of a i1s: %d, product);

N\

X = X op expr

X is a scalarvariablein the list

- expr is a scalar expression that does not reference x
) op is not overloaded,andisoneof +, *, -, /, & *, |, &&, ||
x binop = expr . . . ” A
\ binop is not overloaded, and is one of +, *, -, /, &, *, |

SASe w4 s R

OPENMP ENVIRONMENT

WORKSHARE DIRECTIVES

| VARIABLES SCOPE

SYNCHRONIZATION

OTHER FEATURES

@NESE{“ Mlast

Centre Informatique National
de I'Enseignement Supérieur

(ﬁD

The region is only executed by the master thread J

#pragma omp parallel

{
#pragma omp master
printf (« I am the master thread »);

printf(« I am a slave »);

}

N\

Only the master thread will write:
I am the master thread J

/iN ES [0l
Centre Informatique National
de |'Enseignement Supérieur

09
(ol
ﬁTB“

(
(C

Er

Wait for all the threads to reach the barrier to continue J

#pragma omp parallel
{
if (omp get num thread())=1
b=10;
1f (omp get num threads())=0
a=>5;
#¥pragma omp barrier

printf (« a=%d,b=%d »,a,b);

N\

With the barrier, the output is: Without the barrier, the outputis random
a=5, b=10 a= ?, b= ? J

N

(—q.
(—l.
)
b
(—

INES T Crit

Centre Informatique National
de I'Enseignement Supérieur

Critical section is performed by one thread at a time

int b=0,c=1;
#pragma omp parallel shared(b,c) num threads(3)
{ int a=10;
#pragma omp critical
{
b=b+a;
c=c*ay;
}
}

\qufintf(« a=%d, b=%d) ;

With the critical, the output is: Critical does not include any implicit barrier
b=30, c=1000 J

N

—

“INES i Atom

Centre Informatique National Lo = =
de |'Enseignement Supérieur

g

Atomic section is performed by one thread at a time

int b=0,c=1;
#pragma omp parallel shared(b,c) num threads(3)
{ 1nt a=10;
#pragma omp atomic
b=b+ta;
#pragma omp atomic
c=c*a;
}
printf (« a=%d, b=%d);

N\

X = X op expr
X = expr op x
x binop = expr

X is a scalarvariablein the list

expr is a scalar expression that does not reference x
op is not overloaded,andisoneof +, *, -, /, & *, |, &&, ||
binop is not overloaded, and is one of +, *, -, /, &, *, |

OPENMP ENVIRONMENT

WORKSHARE DIRECTIVES
| VARIABLES SCOPE

SYNCHRONIZATION

OTHER FEATURES

(D
U

Guesm Other featur

A lot of other features are available in OpenMP J

l Here are some OpenMP features I

* Nested parallelism

e Offloading ? (in future releases
of the compilers)

* Threads binding

e Stack size per thread definition

(f-|'

s [hread placemen

- de Ii:ulgmum Supérieur —

Use KMP_AFFINITY to define your binding options J

| KMP_AFFINITY=compact,0,0 |

6))) o | e Threads are as close as
| - |][| | lLJHIHJ possible (compact)
— Thereis no offset (0)

e The first thread is binded to
CPU number0

For OMP_NUM_THREADS=4

ol 11 21 3| 4| s we have the following

binding

Centre Informatique National wl
m— de I'Enseignement Suptrieur —

esm [hread placement

1st thread is binded to cpu 0 J

| KMP_AFFINITY=compact,0,0 |

N B G G Gowe G * Threads are as close as
| - |][| | |J[H-IJ[‘I‘|‘|J possible (compact)
— * Thereis no offset (0)

e The first thread is binded to
CPU number0

For OMP_NUM_THREADS=4

m‘ 1l 21 31 4| s we have the following

binding

2nd thread is binded to cpu 1 J

 KMP_AFFINITY=compact,0,0 |

[“ “ “ “ - “ -] e Threads are as close as
possible (compact)
— There is no offset (0)

e The first thread is binded to
CPU number0

e For OMP_NUM_THREADS=4
we have the following
binding

A

inesm Thread placement
3rd and 4th thread are binded to cpus 2 and 3 J
\

 KMP_AFFINITY=compact,0,0 |

[” ” ” ” - ” -] e Threads are as close as
possible (compact)
— There is no offset (0)

e The first thread is binded to
CPU number0

e For OMP_NUM_THREADS=4
we have the following
binding

ism Thiead placemen

- de I'Enseignement Supérieur —

(f-|'

Use KMP_AFFINITY to define your binding options J

| KMP_AFFINITY=scatter,0,0 |

[- ” . ” 5 “ 5 “ - “ 11] e Threads are scattered
among sockets
— + There is no offset (0)

e The first thread is binded to
CPU number0

For OMP_NUM_THREADS=4

ol 11 21 3| 4| s we have the following

binding

s [hread placement

1st thread is binded to cpu 0 J

| KMP_AFFINITY=scatter,0,0 |

[. “ ; “ 5 “ 5 “ - “ -] e Threads are scattered
among sockets

There is no offset (0)

e The first thread is binded to
CPU number0

For OMP_NUM_THREADS=4

m‘ 1l 21 31 4| s we have the following

binding

2nd thread is binded to cpu 6 J

| KMP_AFFINITY=scatter,0,0 |

L ARRRNEAY
—

e Threads are scattered

among sockets

 Thereis no offset (0)

The first thread is binded to
CPU number0

For OMP_NUM_THREADS=4
we have the following
binding

esw Thread placement
3rd thread is binded to cpu 1 J
\

| KMP_AFFINITY=scatter,0,0 |

HL—Z—J 3 9 | 10 ” 11 1 * Threads are scattered
among sockets
- J . There is no offset (0)

e The first thread is binded to
CPU number0

e For OMP_NUM_THREADS=4
we have the following
binding

Centre Informatique National "' - e

s [hread placement

4th thread is binded to cpu 7 J

| KMP_AFFINITY=scatter,0,0 |

HM 9 ‘ 10 ” 11 1 * Threads are scattered
among sockets
l\/ ____I There is no offset (0)

e The first thread is binded to
CPU number0

e For OMP_NUM_THREADS=4
we have the following
binding

(f-|'

s [hread placemen

- de Ii:ulgmum Supérieur —

Use KMP_AFFINITY to define your binding options J

| KMP_AFFINITY=compact,1,2 |

[6 ” . ” 2 ” g ” - ” 11] e Threads are as close as
possible (compact)

e Thereis an offest of 1

e The first thread is binded to
CPU number 2

For OMP_NUM_THREADS=4

0 1 5 3 | a4 | s we have the following

binding

(f-|'

ism Thread placemen

—de l’tzulgmm Supérieur —

1st thread is binded to cpu 2 J

| KMP_AFFINITY=compact,1,2 |

[6 ” . ” 2 ” g ” - ” 11] e Threads are as close as
possible (compact)
—/

e Thereis an offest of 1

e The first thread is binded to
CPU number 2

For OMP_NUM_THREADS=4

0 1 u 3 4 5 V\{e .havg the following

binding

(f-|'

ism Thread placemen

—de l’tzulgmm Supérieur —

1st thread is binded to cpu 2 J

| KMP_AFFINITY=compact,1,2 |

[6 ” . ” 2 ” g ” - ” 11] e Threads are as close as
possible (compact)
—/

e Thereis an offest of 1

e The first thread is binded to
CPU number 2

For OMP_NUM_THREADS=4

0 1 u 3 4 5 V\{e .havg the following

binding

2nd thread is binded to cpu 4 J

 KMP_AFFINITY=compact,1,2 |

[“ “ “ “ - “ -] e Threads are as close as
possible (compact)

There is an offest of 1

e The first thread is binded to
CPU number 2

e For OMP_NUM_THREADS=4
we have the following
binding

Centre Informatique National w

ism [hread placement

3rd thread is binded to cpu 6 J

 KMP_AFFINITY=compact,1,2 |

HL—HJ ” ” - ” -] e Threads are as close as
possible (compact)
— There is an offest of 1

e The first thread is binded to
CPU number 2

e For OMP_NUM_THREADS=4
we have the following
binding

Centre Informatique National w

ism [hread placement

4th thread is binded to cpu 8 J

 KMP_AFFINITY=compact,1,2 |

m [” - ” -] e Threads are as close as
“ possible (compact)
— There is an offest of 1

e The first thread is binded to
CPU number 2

e For OMP_NUM_THREADS=4
we have the following
binding

@NESE{“ TR Ll

Centre Informatique National b
de I'Enseignement Supérieur

Have a look at the exercise sheet! J

2
m
El
29,
®
{ ey
(®
(®
S
(@)
(®
(g

g
a2
|

{

|

* https://computing.linl.gov/tutorials/openMP/

In my opinion one of the best OpenMP tutorial

* OpenMP quick reference guide

https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/

