
Training @ CINES:

OpenMP

Johanne Charpentier & Gabriel Hautreux
 charpentier@cines.fr hautreux@cines.fr

ÅSupport C/C++ and Fortran

ÅUses the thread fork/ join
model

ÅScalable on UMA and
NUMA architectures
(Shared memory model)

ÅCompiler directives

ÅEnvironment variables

OpenMP is an API for shared memory application

Features

ÅInclude the OpenMP header (for C/C++)

#include<omp.h>
ÅAdd some OpenMP directives
ÅUses the right compiler option:

Intel: -openmp
Gnu : -fopenmp

ÅSet your environment variable:
OMP_NUM_THREADS
to define the number of threads you want to use
(default is the number of core available) Your code is
now using OpenMP

Compiling with OpenMP is straightforward

OpenMP can be used with environment variables

ÅOpenMP provides functions
such as:

- omp_set_num_threads()

- omp_get_num_threads()

- omp_get_max_threads()

- Χ

Have a look at the OpenMP
refcard for more funtionalities!
(http:// openmp.org/mp-documents/OpenMP-4.0-C.pdf)

Those value can also be set inside the code

OpenMP implementation is based on compiler directives

Fortran: directive syntax

$!OMP DIRECTIVE [CLAUSES (variables, schedule ,é),é]

« execute parallel region »

$!OMP END DIRECTIVE

C/C++: directive (pragma) syntax

#pragma omp directive [clauses (variables , schedule ,é),é]

{

« execute parallel region »

}

How would you do to parallelise your code?

How would you do to parallelise your code?

ÅDivide arrays computation between all the
threads ?

ÅMake different threads compute different
things ?

ÅDefine a pool of things to do and perform it
ASAP ?

How would you do to parallelise your code?

ÅDivide arrays computation between all the
threads ?

ÅMake different threads compute different
things ?

ÅDefine a pool of things to do and perform it
ASAP ?

A parallel region launches threads

{

 printf (« HelloWorld ! »);

}

This code will have the following output:

HelloWorld !

HelloWorld !

HelloWorld !

HelloWorld !

HelloWorld !

HelloWorld !

é

You can use as many OpenMP
directives as you want
inside a parallel region!

Serial version Parallel version

Parallelise compute intensive loops

for (i=0;i< n;i ++)

{

 for (j=0;j< n;j ++)

 {

 a[i][j]= b[i][j]

 +c[i][j]*d[j][i];

 }

}

for (i=0;i< n;i ++)

{

 for (j=0;j< n;j ++)

 {

 a[i][j]= b[i][j]

 +c[i][j]*d[j][i];

 }

}

Serial

Parallel

A = B + C x D

Why should we never parallelize the inner loop?

for (i=0;i< n;i ++)

{

 for (j=0;j< n;j ++)

 {

 a[i][j]=b[i}[j]

 +c[i][j]*d[j][i];

 }

}

Why should we never parallelize the inner loop?

for (i=0;i< n;i ++)

{

 for (j=0;j< n;j ++)

 {

 a[i][j]=b[i}[j]

 +c[i][j]*d[j][i];

 }

}

Huge overhead due to thread creation/destruction!

Serial version Parallel version

Parallelise non dependant parts of your code

for (i=0;i< n;i ++)

{

 a[i]=b[i]*f(i);

}

for (i=0;i< n;i ++)

{

 c[i]=g(b[i]);

}

{

 for (i=0;i< n;i ++)

 {

 a[i]=b[i]*f(i);

 }

 for (i=0;i< n;i ++)

 {

 c[i]=g(b[i]);

 }

}

Serial version Parallel version

Enable some parts to be computed by only one thread

for (i=0;i< n;i ++)

{

 a[i]=b[i]*c(i);

}

printf (« Switching a & c »);

 a < - > c ;

for (i=0;i< n;i ++)

{

 c[i]=b[i]*a[i];

}

{

for (i=0;i< n;i ++)

 a[i]=b[i]*c(i);

printf (« Switching a & c »);

 a < - > c ;

}

for (i=0;i< n;i ++)

 c[i]=b[i]*a[i];

}

Close to sections, but creates a pool of non dependant tasks

{

 {

 for (task = 0; task < nTask ; ++ task)

 {

 range = task ;

 {

 myFunction (range);

 }

 }

 }

}

join join join

fork fork fork

F
O
R

SEC
TIO
NS

T
A
S
K

Variables within parallel region can be

used in several different ways

ÅPRIVATE

ÅSHARED

ÅDEFAULT

ÅFIRSTPRIVATE

ÅLASTPRIVATE

ÅCOPYIN

ÅCOPYPRIVATE

ÅREDUCTION

Many options for variable scopes

Variables in Private are private to each thread

{

 rank = omp_get_thread_num ();

 printf (« I am thread number : %d », rank);

}

This code will have the following output
(for 4 threads):

I am thread number : 1

I am thread number : 2

I am thread number : 3

I am thread number : 4

If rank was not private, you could have
had (for instance):

I am thread number : 2

I am thread number : 2

I am thread number : 2

I am thread number : 1

Variables in shared are shared by all threads

Int b = 10;

{

 rank = omp_get_thread_num ();

 printf (« I am thread number : %d, b= %d », rank);

}

This code will have the following output
(for 4 threads):

I am thread number : 1, b=10

I am thread number : 2, b=10

I am thread number : 3, b=10

I am thread number : 4, b=10

If b was not defined as shared, it still
would have been shared.
In fact, default is shared.
You can change the default by adding
the clause:
- default(private)

- default(none)

