

Although molecular dynamics (MD) simulations of

biomolecular systems often run for days to months, many events
of great scientific interest and pharmaceutical relevance occur on
long time scales that remain beyond reach. We present several
new algorithms and implementation techniques that significantly
accelerate parallel MD simulations compared with current state-
of-the-art codes. These include a novel parallel decomposition
method and message-passing techniques that reduce
communication requirements, as well as novel communication
primitives that further reduce communication time. We have
also developed numerical techniques that maintain high accuracy
while using single precision computation in order to exploit
processor-level vector instructions. These methods are embodied
in a newly developed MD code called Desmond that achieves
unprecedented simulation throughput and parallel scalability on
commodity clusters. Our results suggest that Desmond’s parallel
performance substantially surpasses that of any previously
described code. For example, on a standard benchmark,
Desmond’s performance on a conventional Opteron cluster with
2K processors slightly exceeded the reported performance of
IBM’s Blue Gene/L machine with 32K processors running its
Blue Matter MD code.

1. INTRODUCTION
By modeling the motions of atoms within a molecular

system, molecular dynamics (MD) simulations can serve as a
computational “microscope” onto phenomena that are difficult
to observe experimentally. Such simulations hold great
promise in biochemistry and molecular biology, where they
allow functional observation of proteins, nucleic acids,
membranes, and other building blocks of the cell.
Unfortunately, many of the events of greatest biological and
pharmaceutical interest take place on time scales that are still
beyond the reach of MD simulations on modern computers.

David E. Shaw is also with the Center for Computational Biology and
Bioinformatics, Columbia University, New York, NY 10032. E-mail
correspondence: david@deshaw.com.
 Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
 SC2006 November 2006, Tampa, Florida, USA

0-7695-2700-0/06 $20.00 ©2006 IEEE

Such events as functionally important changes in protein
structures, “folding” of proteins to their native three-
dimensional structures, and various types of interactions
between two proteins or between a protein and a candidate
drug molecule often take place on a microsecond to
millisecond time scale. An MD simulation of such an event
might involve tens of thousands of atoms, representing one or
more biological macromolecules surrounded by a solvent
environment consisting of solvated ions (in some cases) and a
large number of water molecules.

Because the vibrational frequencies of these atoms typically
limit each simulation time step to a few femtoseconds,
simulations of more than a microsecond have thus far proven
infeasible on systems with more than about ten thousand
atoms [13, 40]. It seems clear that longer simulations will
require the application of massive computational parallelism.
The scalability of MD codes, however, has historically been
limited by formidable inter-processor communication
requirements associated with the exchange of atomic positions
and inter-atomic force data.

A number of established MD codes, including CHARMM
[7], Amber [10], GROMACS [45], and NAMD [24, 34, 35],
are widely used in the research community, each supporting
somewhat different features and targeting somewhat different
goals. Of these, NAMD is regarded as the most scalable and
the most efficient on highly parallel runs, although
GROMACS typically achieves superior performance on
single-processor runs. IBM’s recently developed Blue Matter
MD code was designed to scale up to the full 128K-processor
size of Blue Gene/L [15-17, 19]. Further advances in the
parallel execution of MD simulations, however, could have
important implications for both scientific research and the
development of novel pharmaceutical compounds.

This paper describes a new MD code, named Desmond, that
achieves unusually high parallel scalability and overall
simulation throughput on commodity clusters by using new
distributed-memory parallel algorithms. Desmond’s
efficiency and scalability are due to 1) a novel parallel
decomposition method that greatly reduces the requirement
for inter-processor communication, 2) an implementation that
reduces the number of inter-processor messages, 3) new,
highly efficient communication primitives, and 4) the use of
short-vector SIMD (single-instruction multiple data)
capabilities of the sort included in most modern commodity
processors. In addition, Desmond employs new numerical

Scalable Algorithms for Molecular Dynamics
Simulations on Commodity Clusters

Kevin J. Bowers, Edmond Chow, Huafeng Xu, Ron O. Dror, Michael P. Eastwood,
Brent A. Gregersen, John L. Klepeis, Istvan Kolossvary, Mark A. Moraes, Federico D. Sacerdoti,

John K. Salmon, Yibing Shan, David E. Shaw
D. E. Shaw Research, LLC, New York, NY 10036, USA

techniques that allow it to use single precision computation
while maintaining high accuracy.

Using Desmond, simulations of several microseconds are
now feasible for reasonably large chemical systems running
on commodity hardware. Our results suggest that Desmond’s
performance on highly parallel systems substantially surpasses
that of any previously described code. Indeed, using a
standard benchmark, we found that Desmond’s performance
on a conventional Opteron cluster with 2048 processors
slightly exceeded that of IBM’s Blue Gene/L machine with
32,768 processors running either Blue Matter or NAMD.
When we tuned simulation parameters specifically for
Desmond, its simulation rate increased by an additional factor
of 2.8 without compromising common accuracy measures.

To provide a concrete example of Desmond’s performance
in an actual biomolecular simulation, on a system with 23,558
atoms (a protein targeted by various cancer drugs called
dihydrofolate reductase, surrounded by water), Desmond
achieved a simulation rate of over 173 ns/day on 256 dual-
processor Opteron nodes (512 processors total) with an
InfiniBand interconnect. On a relatively large system with
92,224 atoms (apolipoprotein A1, the main component of
what is commonly referred to as “good cholesterol,” again
surrounded by water), Desmond ran at a speed of 120 ns/day
on 1024 nodes of the same cluster.

Several other research groups have deployed significant
computational resources either to run a large number of
separate MD simulations, each of limited duration [31], or to
parallelize the simulation of extremely large biochemical
systems [29, 46]. While such simulations may be of
considerable value in certain contexts, our own research
focuses on the many applications that require the simulation of
a single, very long molecular trajectory for a biomolecular
system with tens or hundreds of thousands of atoms. The
ability to perform these computational experiments could lead
to important advances in the biomedical sciences, but the
massively parallel execution of a single, very long MD
simulation on a system in this size range requires far more
inter-processor communication, and thus poses far greater
scalability challenges, than either the execution of many short
simulations or the simulation of an extremely large
biochemical system.

In the remainder of this section, we briefly review the
essential aspects of molecular dynamics simulation. In
Section 2, we describe parallelization strategies, including a
new parallel decomposition method called the midpoint
method that is used to parallelize range-limited interactions
among both covalently bonded and nonbonded atoms, and a
method for parallelizing the three-dimensional Fast Fourier
Transform (FFT) used as part of the procedure that handles
long-range electrostatic interactions. Section 3 describes
techniques for shared memory parallelism within each node
using multiple threads and for parallelism within each
processor using SIMD instructions. Section 4 discusses new
numerical techniques that achieve high accuracy and increased
simulation throughput. Section 5 discusses novel
communication primitives that exploit the communication
patterns used in Desmond to deliver better performance than
standard message-passing protocols. In Section 6, we present

performance measurements for Desmond on two biochemical
systems that have been used to benchmark other MD codes,
including strong scaling results for up to 2048 processors.

Molecular Dynamics Simulations. In an MD simulation,
the positions and velocities of particles corresponding to
atoms evolve according to the laws of classical physics. In
this paper, we will assume a one-to-one correspondence
between particles and atoms for expository simplicity,
although Desmond is also capable of representing a group of
atoms by one particle or a single atom by several particles.
Desmond is designed for explicit solvent simulations, where
water molecules (along with any ions that may be present
within this solvent environment) are represented at the atomic
level rather than through a less accurate but potentially
cheaper continuum electrostatics model.

Each time step of an MD simulation involves 1) computing
forces on each particle (force computation) and 2) using these
forces to compute updated positions and velocities on each
particle by numerically integrating Newton’s laws of motion
(integration). Most of the computational load lies in the force
computation.

The force computation uses a model called a molecular
mechanics force field (or simply, force field), which specifies
the potential energy of the system as a function of the atomic
coordinates. (The force on a particle is the derivative of this
potential energy with respect to the position of that particle.)
Although classical MD simulation is inherently an
approximation, it is dramatically faster than a direct solution
to the full set of quantum mechanical equations. Several
decades of work have gone into the development of
biomolecular force fields through fitting models to
experimental and quantum data.

Desmond is compatible with common biomolecular force
fields, including CHARMM [26], AMBER [23], OPLS-AA
[22], GROMOS [39], and MMFF [20]. All of these express
the total potential energy (E) of a chemical system as a sum of
the form

E = Ebonded + Ees + EvdW.
Ebonded is the sum of several bonded terms which depend on

the covalent bond structure of the molecules. These include
bond length terms, involving two particles connected by a
bond; bond angle terms, involving three particles, two of
which are bonded to a third; and dihedral angle (torsional)
terms, involving four particles connected by three bonds.

Ees and EvdW—the electrostatic and van der Waals terms,
respectively—are known as nonbonded terms because they
include interactions between essentially all pairs of particles in
the system. They therefore represent a much larger
computational burden than the bonded terms. Van der Waals
forces fall off sufficiently quickly with distance that they can
typically be neglected for pairs of particles separated by more
than some cutoff radius R, typically chosen between 9 and 12
Å. An ever-mounting body of evidence shows that neglecting
electrostatic interactions beyond a cutoff is inadequate for
explicit solvent simulations [8, 27, 30, 33]; electrostatic forces
thus are typically computed by one of several efficient,
approximate methods that account for long-range interactions
without requiring the explicit interaction of all pairs of
particles. Desmond supports particle mesh Ewald (PME) [12]

and k-space Gaussian split Ewald (k-GSE) [41], both of which
use the fast Fourier transform (FFT) to compute electrostatic
potential on a mesh given a charge distribution on that mesh.
Both these methods require that modified pairwise
electrostatic interactions be computed explicitly within the
cutoff radius. They also require that charge be mapped from
particles to nearby mesh points before the FFT computation
(charge spreading) and that forces on particles be calculated
from potentials at nearby mesh points after the FFT
computation (force interpolation). PME and k-GSE assume
periodic boundary conditions, which are used by default in
Desmond.

One can lengthen the simulation time step somewhat by
applying constraints that eliminate the fastest vibrational
motions. When applying constraints, we typically fix the
lengths of bonds to all hydrogen atoms, as well as angles
between the bonds in water atoms, by computing a correction
to atom positions and velocities after integration.

2. PARALLELIZATION OF MOLECULAR DYNAMICS
A distributed memory parallel program consists of several

processes using a number of processors that can communicate
via a network. Each process usually runs on one processor,
but it is also common for multiple processes to be run on one
processor, or for each process to be run on multiple processors
that share memory. In this section, we discuss parallelization
from the point of view of processes, independent of their
relation to processors. In Section 3.1, we discuss how we
actually run Desmond on an Opteron cluster that has two
processors per node.

In Desmond, as in many other MD codes designed for
scalability [15-17, 19, 34-36], each process takes
responsibility for updating positions of particles that fall in a
certain region of space. Desmond assumes that the region to
be simulated (the global cell) is a parallelepiped, divided into
a regular grid of small parallelepipeds called boxes. For
expository simplicity, we will assume in this paper that both
the global cell and the boxes are rectangular parallelepipeds,
although Desmond also supports non-rectangular global cells.
Each process updates the coordinates of the particles in one
box, referred to as the home box of that process and of those
particles. In the interest of simplicity, we will refer
interchangeably to a process and its home box.

The FFT operation used to evaluate long-range
electrostatics requires communication between boxes that are
distant from one another. All other Desmond operations that
require inter-process communication—explicit pairwise
computation of nonbonded forces, computation of bonded
forces, charge spreading, force interpolation, computation of
constraints, and particle migration—involve only local
communication between nearby boxes. Section 2.1 describes
our parallelization strategy for computations involving local
communication and Section 2.2 describes our parallelization
strategy for the FFT.

2.1 The Midpoint Method
We first describe Desmond’s approach to parallelizing the

evaluation of nonbonded (electrostatic and van der Waals)
forces between all pairs of atoms separated by less than the
cutoff radius R. Several papers survey traditional methods for
parallelizing the explicit evaluation of interactions between
pairs of particles separated by less than some maximum
distance [21, 36-38]. Plimpton [36] categorized these
methods as atom, force, and spatial decomposition methods.
Unlike atom and force decomposition methods, spatial
decomposition methods offer the desirable property that the
amount of data to be transferred into and out of each process
(the method’s communication bandwidth) decreases as the
interaction radius decreases. In traditional spatial
decomposition methods, as in Desmond’s parallelization
strategy, each process takes responsibility for updating
positions of particles falling in one region of space. In
traditional spatial decomposition methods, the process that
computes the interaction between two particles is always a
process on which one or both particles reside.

A number of recently introduced methods for parallelizing
range-limited particle interactions require significantly less
communication bandwidth than traditional parallelization
methods [4-6, 43, 44]. These novel methods also employ a
spatial assignment of particles to processes, but unlike
traditional spatial decomposition methods, they sometimes
compute an interaction between two particles in a process on
which neither particle resides [6]. We refer to such techniques
as neutral territory methods [6, 43].

Two distinct neutral territory methods were developed
independently by Snir [44] and Shaw [43], who point out that
these methods might be viewed as hybrids between traditional
spatial decompositions and the force decompositions
introduced by Plimpton and Hendrickson [38]. We later
generalized these methods [6] and introduced several new
neutral territory methods, including the midpoint method [5].
The midpoint method requires less communication bandwidth
than traditional spatial decomposition methods, particularly at
moderate or high levels of parallelism. While certain other
neutral territory methods require less communication
bandwidth than the midpoint method for pairwise interactions
parallelized over a sufficiently large number of processes, the
midpoint method offers several significant advantages for an
MD code [5]. It applies not only to pairwise interactions, but
also to interactions involving sets of three or more particles,
and it can therefore be used to parallelize the evaluation of
bonded force terms. Moreover, it allows nearly all the
computations that require local communication to rely on the
same data that is communicated for the evaluation of pairwise
nonbonded forces. It also typically incurs a smaller penalty
due to communication latency than other methods. A related
method was recently developed independently for Blue Matter
[17, 19].

When applied to pairwise interactions, the midpoint method
specifies that two particles interact on a particular box if and
only if the midpoint of the segment connecting them falls
within the region of space associated with that box. We refer

Figure 1. Assignment of particle pairs to interaction boxes in the midpoint
method. In this figure, the boxes are square with side length b, and R = 1.5b.
Each pair of particles separated by a distance less than R is connected by a
dashed line segment, with the “x” at its center indicating the box which will
compute the interaction of that pair.

to the box in which a set of particles interact as their
interaction box. Figure 1 illustrates the assignment of particle
pairs to interaction boxes implied by the midpoint method.
Two particles that lie in the same box necessarily interact in
that box, but particles that lie in different boxes may interact
either in the box in which one of them resides (e.g., particles 2
and 3) or in a box in which neither resides (e.g., particles 1
and 5 or particles 3 and 4).

In the midpoint method, the volume of space from which a
given process must “import” particle data that ordinarily
resides within other processes (its import region) includes
only points within a distance R/2 of its home box, because if
the distance between two particles is less than R and one of
them lies more than a distance R/2 from the home box, their
midpoint must lie outside the home box. This import region is
shown in Figure 2(a) for a two-dimensional system.

For comparison, Figure 2(b) shows the import region of a
particular traditional spatial decomposition method in which
the box that interacts two particles is always the home box of
one or both particles. In this method, the particles interact
within the home box of the particle with the smaller x-
coordinate, unless the home boxes of the two particles are in
the same vertical column, in which case the particles interact

Figure 2. Import regions of (a) the 2-D midpoint method and (b) the 2-D
analog of the HS method, where R = 1.5b. In each case, the interaction box is
light gray and the import region is dark gray.

within the home box of the particle with the smaller y-
coordinate. The import region includes half the space within a
distance R of the home box. This method is the 2-D analog of
the HS method defined in our recent publications [6, 43].

When the midpoint or HS methods are used for an MD
simulation, or any other application that requires computation
of the total force on each particle, each interaction box must
“export” a force contribution to each of the particles in its
import region after it has computed the interactions assigned
to it. A method in which each process computes all force
contributions for each particle in its home box would avoid
the need for such force export, but it would have twice the
import volume of the HS method and would require that each
interaction between particles in different boxes be computed
twice.

Communication Volume. Assuming uniform particle
density, the amount of particle data that must be transferred
into each process during particle import and out of each
process during force export is proportional to the volume of
the import region. We therefore use the volume of the import
region (the import volume) as a measure of communication
bandwidth requirements of a parallelization method.
Assuming cubical boxes of side length b, we can express the
import volumes of the 3-D HS and midpoint methods
(Vimport,HS and Vimport,midpoint, respectively) in terms of αR = R/b
as:

Vimport,HS = b3 (2/3 παR
3 + 3/2 παR

2 + 3αR)
Vimport,midpoint = b3 (1/6 παR

3
 + 3/4 παR

2 + 3αR).
A large value of αR implies a high degree of parallelism, as

b is determined by the number of processes used for
simulation as well as the size of the global cell. The import
volume of the midpoint method is always smaller than that of
the HS method, with the difference growing in both relative
and absolute terms as αR grows. For a more detailed
comparison of the import volumes of various parallelization
methods, see [5] and [6].

Parallelization of Other Calculations. The midpoint
method also applies to interactions that involve sets of three or
more particles: the interaction between a set of m particles is
computed on the box that contains their midpoint, defined as
the center of the smallest sphere that contains all m particles.
Desmond uses the midpoint method to parallelize computation
of the bonded terms, which typically involve two, three, or
four particles. Each of these terms is evaluated on the box
containing an easily computed, approximate midpoint of the
particles involved. For parameters associated with typical
biomolecular force fields, this requires no additional
communication because all particle positions needed for the
computation of each bonded term are already included in the
midpoint method import region associated with the pairwise
nonbonded computations [5].

Similarly, no additional communication is typically required
for the charge spreading or force interpolation operations
associated with PME and k-GSE because the particles to be
communicated already lie in the midpoint method’s import
region [5]. The same holds for the constraint calculations
performed in Desmond. Under the HS method, these
operations would require additional communication.

Particle Migration. In an MD simulation parallelized via
the midpoint method, particles migrate from one box to
another as they move. In principle, particle migration could
be combined with the particle import step of the midpoint
method. In Desmond, we have chosen to perform particle
migration in a separate round of communication following
particle position import, to make communication protocols
simpler and more efficient. Desmond also exploits this latter
round of communication to transfer responsibility for
computation of bonded terms and constraint terms between
processors. Desmond always performs calculations with
current position and velocity data. However, because the
distance by which a particle typically moves in a time step is
several orders of magnitude smaller than the cutoff radius,
Desmond can avoid performing migration at every time step
by slightly expanding the import region. In particular,
expanding the import region by a few tenths of an Angstrom
in each direction ensures that migration need be performed
only every few time steps, without affecting the accuracy of
the force terms computed. While this increases the
communication bandwidth required for particle import and
force export, it typically reduces overall communication
requirements.

Number of Messages. The current version of Desmond
requires that all box side lengths are greater than R/2,
implying that each box only communicates with its 26 nearest
neighbors under the midpoint method. The HS method, on the
other hand, requires communication between more distant
boxes whenever any box side length is less than R [5].

Instead of sending 26 individual messages from each
process simultaneously, Desmond sends only 6 messages, one
in each cardinal direction, using a staged approach similar to
that introduced by Plimpton in the context of a traditional
spatial decomposition method [36]. All boxes first send
messages in the +x and –x directions, followed by messages in
the +y and –y directions, followed by messages in the +z and
–z directions. To send data to a (+x, +y, +z) direction
neighbor, that data is sent first in the +x direction (along with
all other data being sent in that direction), then in the +y
direction (along with other data), and finally in the +z
direction (along with other data). Other neighbors are handled
similarly. The aggregated messages generally remain short:
due to spatial locality, much of the data sent in the +x
direction to the (+x, +y, +z) direction neighbor, for example,
will also be needed by the +x direction neighbor.

The question remains as to whether sending 6 messages in 3
stages is faster than sending 26 individual messages
simultaneously. In many communication networks, the
latency of communication calls may be somewhat overlapped,
that is, it is possible to send k messages with nonblocking
communications in time less than the product of k with the
time to send a single message. In tests using 4096-byte
messages on an InfiniBand network, we found that sending
and receiving 2 simultaneous messages took 33.7 µs. Hence
the staged approach would take approximately 3 × 33.7 =
101.1 µs, significantly less than the 328.8 µs required to send
and receive 26 simultaneous messages (for comparison,
sending and receiving a single message took 22.4 µs).

Load Balance. The density of atoms in biomolecular
systems is highly uniform, at approximately 0.1 atoms/Å3.
Load balance is therefore not a significant issue for explicit
solvent MD simulations at moderate levels of parallelism, as
illustrated by our performance measurements in Section 6. At
very high levels of parallelism, statistical fluctuations,
differences between the bonded terms in solvent molecules
(e.g., water) and in solute molecules (e.g., proteins and lipids),
and the slightly lower density of solute molecules cause some
load imbalance. Variants of the midpoint method [5, 17, 19]
allow for improved load balance, but we have found these to
have only a minor performance impact in Desmond due to
additional communication and bookkeeping overhead.

Parallelization Engine. To maximize the efficiency of
communication and computation associated with the midpoint
method, an implementation should ensure that:
• The messages to be sent are as small as possible, including

only data that needs to be updated in other processes, and
no more messages are sent than necessary.

• Assembly of these messages requires minimal computation.
• Each process stores data in such a way that it can be

accessed efficiently when needed for computation.
To achieve these goals, we developed a portable library

called the particle simulation parallelization engine that
manages ordering of data in memory and assembly of
messages sent to other processes. This engine handles not
only particle records, but also group records that specify
properties of sets of particles (for example, each bond and
constraint term has an associated group record that specifies
which particles participate in that term, along with the
corresponding force field parameters). Desmond’s
parallelization engine ensures that:
• The six messages sent by each process, one in each of the

cardinal directions, include only those records required by
the midpoint method, with no overhead. Records are sent
only to processes that need a copy but do not already have
one. Only particles that fall strictly within a box’s import or
export region are communicated. In particular, the corners
and edges of this region are properly rounded, as we have
found the rounding computation to be cheaper than the
additional overheads implicit in not rounding. Only a single
copy of a record is communicated across any
communication link, even if that record needs to be sent to
multiple destinations. Between migrations, the engine
performs distributed memory update operations on subsets
of the particle properties rather than communicating the
entire particle record. The update messages themselves
have no formatting overhead; the sender and receiver both
know how to pack and unpack these messages.

• Each process aggregates the six outgoing messages in no
more than a single pass through its particle memory.

• A process can find any particle record present in an amount
of time independent of the number of particle records stored
in that process. Such particle lookups can be indexed by
spatial location as well as local or global particle identifier.

2.2 FFT Parallelization
The PME and k-GSE methods for efficient long-range

electrostatics both require computation of a 3-D FFT on a
mesh, followed by a multiplication of the transformed data
with an influence function that is independent of the data,
followed by an inverse 3-D FFT. The computational structure
of the inverse FFT is similar to that of the forward FFT. We
introduce a parallelization technique for the multidimensional
FFTs that minimizes the required number of inter-process
messages, assuming that the mesh is distributed spatially
across boxes and their corresponding processes.

Let Nx×Ny×Nz denote the dimensions of the 3-D mesh
superimposed on the global cell; to simplify the calculation of
the FFT, we assume that Nx, Ny, and Nz are all powers of 2.
We assume that these mesh points are distributed spatially
across px×py×pz boxes, where px, py, and pz are also powers of
2. We denote by nx×ny×nz the size of the mesh on each box.
For biomolecular simulations, Nx, Ny, and Nz are typically
between 32 and 128. Parallel FFT computation would not
normally be necessary for this small amount of data, except
for the fact that the data is distributed. The cost for
redistributing the data turns out to govern how best to
parallelize small distributed FFT calculations.

A 3-D FFT is computed by successively calculating sets of
1-D FFTs in each of the three dimensions. Each column of
boxes in the x-dimension contains Nxnynz data points,
requiring nynz separate 1-D transforms. The data for each 1-D
transform is distributed across all px processes in the column.
One parallelization approach, suitable for torus networks such
as that of Blue Gene/L, is to use all-to-all communication
among these px processes to redistribute the data such that
each process computes nynz/px transforms [14].

For commodity networks, however, all-to-all
communication among the px processes is slow and generally
requires every process to send a message directly to every
other process. Our approach is not to redistribute the data and
instead to perform directly the butterfly communications
required in the FFT calculations, as shown in Figure 3. In the
x-dimension transform considered above, the FFT will require
log2(Nx) stages, of which log2(px) will require inter-process
data transfer. (The communication pattern is greatly
simplified because Nx and px are powers of 2.) In each stage
that requires inter-process communication, each process
exchanges data with one other process.
FFT algorithms can be categorized as decimation in time or
decimation in frequency. In a decimation in frequency
transform, the first log2(px) stages (of a 1-D transform)
require inter-process communication and the remaining
log2(nx) stages use completely local data. In a decimation in
time transform, the first log2(nx) stages are local while the
remaining log2(px) stages require communication. Our
forward transforms use decimation in frequency. After three
sets of forward transforms, one along each dimension, the
ordering of the transformed data across processes is bit-
reversed, but computations in the Fourier domain
(multiplication by the influence function) can be applied with
the data in this order at no extra expense. Our inverse

ρ0

ρ1

ρ2

ρ3

ρ4

ρ5

ρ6

ρ7

ρ0

ρ4

ρ2

ρ6

ρ1

ρ5

ρ3

ρ7

φ0

φ4

φ2

φ6

φ1

φ5

φ3

φ7

φ0

φ1

φ2

φ3

φ4

φ5

φ6

φ7

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

Proc 0

Proc 1

Proc 2

Proc 3

Decimation in Frequency Transform Decimation in Time Transform

Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

Figure 3. Computation pattern for the 1-D forward decimation in frequency
FFT and 1-D inverse decimation in time FFT for 8 points distributed across 4
processes. The ρ variables represent charge and the φ variables represent
potential. The computation of φ from ρ involves multiplication by an
influence function, performed in bit-reversed order. The links that cross
process boundaries imply inter-process communication. In decimation in
frequency, the first two stages require communication; the last stage is local.
In decimation in time, the first stage is local; the last two stages require
communication.

transforms use decimation in time, which brings the result
back into the original spatially distributed ordering.

When parallelizing across 512 processes in an 8×8×8
configuration, the forward and inverse 3-D FFTs each require
9 messages to be sent by each process: 3 for each of 3
dimensions. For relatively small meshes on commodity
networks, the number of messages to be sent and their
associated latency is the primary determinant of FFT
communication time. FFTs involving large amounts of data
are typically parallelized in other ways (e.g., FFTW [18]),
because in those cases, message bandwidth begins to dominate
latency.

3. INTRA-NODE PARALLELIZATION

3.1 Shared Memory Parallelism
Many modern distributed parallel systems have multiple

processors per node, typically in a shared memory
configuration. This leads to a choice of parallelization
methods at the node level. If a node has k processors, one
option is to split the box assigned to that node into k smaller
boxes, with k corresponding processes. Each processor takes
responsibility for one of the smaller boxes and the
corresponding process, using the same protocols to
communicate with other processors on the same node as with
processors on other nodes. An alternative is to run a single
process per node with k threads, called a hybrid approach,
which may be implemented using OpenMP or POSIX threads
(pthreads). The various threads may be running the same
parts of the code simultaneously, or they may be running
different parts of the code.

In various studies involving other applications [9, 11],
assigning a separate process to each processor has been found
to be more efficient than the hybrid approach, due to poorer
cache behavior and serialization of communication and other
“critical sections” in the hybrid approach. However,
implementations of message-passing protocols often limit the
maximum number of processes they can support, which forces

the use of a hybrid approach in order to utilize very large
numbers of processors. Desmond’s requirement that box side
lengths be no less than R/2 has a similar effect, as it limits the
number of boxes that can be used for small chemical systems.
To allow high degrees of parallelism for small chemical
systems, Desmond uses pthreads to implement a capability for
each process to divide its work among multiple threads and
processors. This implementation is highly portable across
platforms. For a fixed number of processors, we find that the
use of multiple threads per process leads to a small
degradation in performance (see Section 6).

3.2 Data Parallelism
Many microprocessors provide short-vector SIMD (single

instruction, multiple data) extensions to accelerate multimedia
tasks. For example, some Intel and AMD processors provide
SSE (streaming SIMD extensions) while some PowerPC-
based processors provide AltiVec extensions. In both cases,
these extensions include the ability to simultaneously perform
four 32-bit single precision floating point operations.
Unfortunately, these operations require that memory accesses
are 16-byte aligned, making it difficult or impossible for a
compiler to generate efficient SIMD code automatically.

To exploit short vector SIMD accelerations without
resorting to hand-coding SIMD instructions, we developed a
programming interface that allows users to write code that will
compile anywhere but that will be converted to near optimal
inline assembly on platforms that support short-vector SIMD.
Desmond uses this interface in nearly all its compute-intensive
loops. The interface is a set of C++ classes utilizing operator
overloading, making SIMD code look very much like plain C
code. At present, we support conversion of code written
under this programming model to SSE-accelerated data
parallel code as well as portable scalar code; one can easily
add support for the short-vector SIMD instructions available
in other architectures. Our approach might be viewed as an
elaboration of the V4 programming model used in the
relativistic 3-D particle-in-cell simulation code V-PIC [3].

SIMD parallelism is used either “vertically” or
“horizontally.” In vertical SIMD, four similar quantities are
computed simultaneously; for example, these might comprise
forces due to four particles on a given particle, or four local
1-D FFTs. In horizontal SIMD, four arithmetic operations are
performed simultaneously on a single particle; for example,
one might compute its energy and the x-, y-, and z-components
of its force.

The use of SIMD gives Desmond very high single-
processor performance. We estimate that the kernel that
performs the cutoff-limited nonbonded force calculations is
operating at 1.7 single precision Gflops/s per processor (peak
is 9.6 single precision Gflops/s, assuming four per cycle).
This estimate is based on a count of 56 (single precision) flops
per pair of interacting particles (there are also 19 memory
operations and 35 other operations per pair of particles,
including integer arithmetic and address generation).

4. NUMERICAL TECHNIQUES
Desmond can be configured to execute the great majority of

its arithmetic instructions in either single precision or double
precision. Single precision operation reduces memory and
network bandwidth requirements by about a factor of two and
allows SIMD extensions to be used, giving much higher
performance than double precision. In this section, we briefly
describe some numerical techniques that allow Desmond to
operate accurately and efficiently in single precision.

An exact MD simulation would conserve energy exactly.
Errors in the simulation generally lead to an increase in the
overall energy of the simulated system with time, a
phenomenon known as energy drift. The rate of energy drift
is often used as one measure of the accuracy of an MD
simulation, with a lower energy drift rate corresponding to a
more accurate simulation. We express energy drift in terms of
that rate at which the temperature would change if all the
excess energy were converted to heat. Desmond can be
configured such that its single precision simulations achieve
energy drift levels below 1 K per microsecond of simulated
time—better than most double precision codes.

Bitwise Time Reversibility. In principle, an MD
simulation should be time reversible, because the classical
equations of motion are time reversible. For example, if one
runs a simulation for a thousand time steps, negates the
instantaneous velocities for all particles, and runs for another
thousand time steps, one should exactly recover the initial
particle positions. Most particle simulation codes fail to
achieve reversibility for two reasons. First, roundoff error
during integration leads to a loss of state information; particle
positions and velocities at one time step cannot be exactly
reconstructed from those at the next time step. Second, lack
of associativity of floating point summation leads to a
situation where computed forces can depend on various
factors that affect order of summation, such that these forces
are not uniquely defined by particle positions and force field
parameters.

Desmond, on the other hand, preserves exact bitwise
reversibility for simulations that do not use constraints and in
which particle migration is performed at every time step,
under some MD integration schemes. Desmond avoids loss of
information during integration by performing updates to
particle coordinates using fixed point arithmetic (the details
of how this is done without significant performance impact
are beyond the scope of this paper). Desmond avoids
problems due to non-associativity by maintaining a consistent
ordering of the particles and computations such that computed
forces are unique functions of the particle positions and force
field parameters. We are not aware of any other large floating
point code, scalar or parallel, that ensures exact reversibility
for non-trivial runs. Reversibility helps ensure that Desmond
will accurately model thermodynamic relationships that
depend on detailed balance and also results in very low energy
drift. While Desmond simulations that employ constraints or
that perform particle migration infrequently are not strictly
bitwise reversible, we have found that the numerical
techniques mentioned here are still beneficial in those cases,
resulting, for example, in significantly lower energy drift. In

addition, we note that Desmond simulations are always
deterministic.

Constraint Stabilization. Constraint calculations can
introduce correlations between roundoff errors in a particle’s
position and velocity. These correlations can cause severe
energy drift in single precision MD codes. We have
developed new position constraint algorithms that eliminate
these correlations, to be described in a future paper.

Normalized Local Coordinate Representation. Desmond
represents the positions of particles in each box in a local
coordinate system that is normalized to that box, i.e., each
coordinate ranges from –0.5 to +0.5. This gives extra
precision compared to using absolute global coordinates,
particularly in parallel runs. Another benefit of using a
normalized coordinate representation is that pressure control,
which alters the dimensions of the boxes, can be implemented
to be time-reversible. Further, local coordinate representation
simplifies the handling of periodic boundary conditions.

Interpolation Schemes. Desmond uses a piecewise
polynomial approximation to compute explicit pairwise
electrostatic interactions between nearby atoms, as the
modified functional form required by PME and k-GSE is
expensive to compute directly. Instead of computing the force
between two particles as a function of the distance r between
them, however, Desmond computes it as a function of a
transformed variable of the form ar2+b. This has the benefit
that energy and force can be computed simultaneously from
the same set of polynomial coefficients without using square
roots or reciprocal square roots. This ensures that forces are
strictly the gradient of some potential and eliminates
expensive operations in Desmond’s nonbonded inner loop.

5. COMMUNICATION PRIMITIVES USING RDMA
Modern high-performance interconnects use some form of

remote direct memory access (RDMA) to transfer data in a
distributed memory system without interrupting the CPU. To
use RDMA, memory regions participating in data transfer
must be registered to prevent these memory regions from
being swapped out and to provide the network interface card
with the virtual to physical address mapping. Memory
registrations, however, require costly OS operations. To
avoid this overhead for short messages, a message-passing
library would typically pre-allocate and pre-register several
small buffers; a short message is sent by first copying it to a
pre-registered buffer, then sending it via RDMA, and finally
copying it from the pre-registered buffer on the receiver side.
To send a long message, a three-step protocol is used which
avoids memory copies at the cost of memory registrations: 1)
the sender registers the memory of the data to be sent and first
sends a short request message, 2) the receiver registers
memory and replies with a destination address, 3) the sender
sends the data directly via RDMA to the destination address.

We have developed a novel set of RDMA communication
primitives for all message lengths that avoids the memory
copies, memory registrations, and multiple-step protocols of
the above techniques. This results in communication

Figure 4. Iterative exchange pattern for two processes and three
communication steps. On processor 0, two send buffers are labeled A and C;
two receive buffers are labeled B and D. On processor 1, the corresponding
buffers are labeled A’, C’, B’, and D’. When processor 0 receives a message
into buffer D, it implies that the communication from buffer A to buffer B’ has
completed and that the send buffer A and the receive buffer B’ are available.
The next communication step then uses these buffers without needing to
synchronize with the receiver. This communication pattern can be regarded as
two simultaneous ping-pongs.

primitives that have much lower overhead for sending a
message. The primitives use a one-step protocol, sending
RDMA messages without attempting to first synchronize with
the receiver. For this to work, one must guarantee that for
each message being sent, there is a buffer available on the
receive side. This condition is easily satisfied for common
communication patterns used in many parallel codes,
including Desmond, which we call iterative exchange
patterns. These patterns are composed of iterations where a
process exchanges messages with other processes. When a
process receives a message, this implies that a message sent
by that process in an earlier iteration must have been received;
thus the receive buffer used in that earlier iteration is
available. Figure 4 shows this in detail.

At initialization time, the application specifies a connection
between each pair of processes that will communicate, as well
as the maximum buffer sizes required. Two sets of buffers
(two receive and two send buffers) for each connection are
allocated and registered at this time. The application uses
these buffers directly, alternating between the two sets of
buffers as shown in the figure.

Our implementation of these communication primitives is
for InfiniBand; it uses the Verbs interface provided by
Mellanox Technologies [28]. We use RDMA write
operations, which are faster than RDMA read operations on
current hardware [42]. We must poll on the message
explicitly to know when a message has arrived, since it is
inefficient for RDMA writes to generate a completion signal
on the receive side. We use the two-stage polling technique
described in [25]. The technique requires that send and
receive buffers are not modified except for writing data to be
sent into the send buffer.

We compare these primitives to an implementation of MPI
called MVAPICH [25] which supports InfiniBand and its
RDMA features. We tuned MVAPICH to optimize
application performance. In particular, we use 12 KB pre-
registered buffers (called VBUFs) and 8 VBUFs per
connection (there is a connection between every pair of MPI
processes in MVAPICH 0.9.5, which limits VBUF memory).
Many messages in Desmond, however, are over 12 KB, which

means the slower three-step protocol is used for these
messages. A slower protocol is also used for short messages
when MVAPICH’s credit system detects that VBUFs on the
receiver side have been exhausted.

We benchmarked our new communication primitives on an
iterative exchange between processes arranged in a ring
topology, where processes exchange messages with their left
and right neighbors. For a ring of 1024 processes (on 1024
nodes of an InfiniBand cluster) the average time for one
iteration was 111.5 microseconds on MVAPICH, and 12.5
microseconds with our new primitives—almost an order of
magnitude improvement. The performance of the new
primitives is almost insensitive to number of processes, while
the performance of MVAPICH degrades with number of
processes. Compared to MPI, the new primitives trade
generality for higher performance.

6. PERFORMANCE TESTS
Performance tests with Desmond were carried out on an in-

house 1056 node (2112 processor) InfiniBand cluster. Each
node is a Sun Fire V20z server with two 2.4 GHz AMD
Opteron Model 250 (single-core) processors. The operating
system is 64-bit Linux (kernel 2.6.9 from the Rocks 4.0
cluster distribution [32]). The InfiniBand network is
constructed with Cisco SFS 7000 leaf switches, Cisco SFS
7008 core switches, and Cisco InfiniBand PCI-X Host
adapters. Timings were collected by accessing the Opteron
processor cycle counter, which gives very fine-grained timing
results.

We present performance results for two chemical systems
that are among the most common benchmark systems used for
MD codes. These are the ApoA1 (apolipoprotein A1) system
with 92,224 atoms (in a global cell of approximately
109×109×78 Å3) and the DHFR (dihydrofolate reductase)
system, also known as the Joint Amber-CHARMM
benchmark, with 23,558 atoms (approximately 62×62×62 Å3).
For each system, we use two sets of simulation parameters.
First, we use benchmark parameters, which are the parameters
specified by the benchmarks. (For ApoA1, Desmond uses a
PME mesh that is finer than specified by the benchmark, due
to the powers-of-2 restriction in Desmond’s FFT calculation.)
We also use production parameters, which were tuned for
Desmond to achieve a higher simulation rate without
compromising common accuracy measures, as discussed
below. Table 1 lists the benchmark and production
parameters for both systems. All simulations were run
without temperature or pressure control.

We first show performance results using benchmark
parameters. Table 2 shows elapsed time per time step for
Desmond running on our cluster on the two benchmarks for 8
to 2048 processors. Figures 5 and 6 show this data
graphically for ApoA1 and DHFR, respectively. Our default
run for each system uses two processes per node and our new
communication primitives. For ApoA1, we also show results
using a single two-threaded process on each node (“tpn=2”);

Benchmark Parameters

System Time
step

Con-
straints

PME
frequency Cutoff PME mesh PME

order

ApoA1 1fs No 4 steps 12 Å 128×128×128 4
DHFR 1fs No 1 step 9 Å 64×64×64 4

Production Parameters

System Time
step

Con-
straints

PME
frequency Cutoff PME mesh PME

order

ApoA1 2.5fs Yes 2 steps 12 Å 64×64×64 6
DHFR 2.5fs Yes 2 steps 9 Å 64×64×64 4

Table 1. Benchmark and production parameters. The cutoff is the cutoff
radius used for explicit evaluation of pairwise electrostatic and van der Waals
interactions; the PME order is the order of the B-splines used in the smooth
PME algorithm. For ApoA1, NAMD used a coarser PME mesh of
108×108×80; Desmond and Blue Matter used 128×128×128 which, although
more costly, is necessary due to the powers-of-2 restriction in Desmond’s and
Blue Matter’s FFT calculation.

Processor
Count

ApoA1 ApoA1
 tpn=2

DHFR DHFR
with MPI

8 0.2568 0.0414 0.0429
16 0.1268 0.1415 0.0210 0.0219
32 0.0643 0.0704 0.0115 0.0121
64 0.0335 0.0374 0.0063 0.0069

128 0.0182 0.0206 0.0037 0.0044
256 0.0094 0.0105 0.0020 0.0026
512 0.0052 0.0062 0.0014 0.0023

1024 0.0030 0.0035
2048 0.0020 0.0025

Table 2. Desmond performance: Average elapsed time per time step (in
seconds) using benchmark parameters.

Processor
Count

ApoA1 DHFR

8 0.3542 0.0569
16 0.1730 0.0335
32 0.0898 0.0190
64 0.0479 0.0124

128 0.0285 0.0097
256 0.0234 0.0070
512 0.0186 0.0159

1024 0.0260
Table 3. NAMD performance: Average elapsed time per time step (in
seconds) using benchmark parameters, running on the Opteron/InfiniBand
cluster. Both processors on each node were used for computation.

this mode is slightly slower at any given level of parallelism.
For DHFR, we also show results using an MPI library
(MVAPICH) instead of our communication primitives,
illustrating that the performance gain due to these primitives
increases as the number of processors increases.

To provide additional context for these results, we compare
them to performance measurements on the same benchmarks
for the NAMD and Blue Matter codes, both of which were
designed specifically for high parallel performance [15-17, 19,
35]. Table 3 and Figures 5 and 6 show performance results
for NAMD on our cluster. Desmond is faster than NAMD at
all levels of parallelism examined, with the performance
difference growing as parallelism increases. On ApoA1,
Desmond scales to at least 2048 processors, at which point it

Figure 5. ApoA1: Average elapsed time per time step using benchmark
parameters.

Figure 6. DHFR: Average elapsed time per time step using benchmark
parameters.

is 9.3 times faster than NAMD running on 512 processors;
NAMD’s simulation rate decreases beyond 512 processors.

Table 4 shows performance measurements for the ApoA1
and DHFR benchmarks on Blue Gene/L using NAMD and
Blue Matter. This data is also plotted in Figures 5 and 6 for
comparison purposes. In the tests reported for Blue Matter
[14, 15], both processors (cores) on each node were used for
computation. In the tests reported for NAMD [24], one core
was used for computation while the other was used for
communication (co-processor mode).

Processor

Count
ApoA1 with

NAMD
[24]

ApoA1 with
Blue Matter

[16]

DHFR with
Blue Matter

[17]
64 0.1

256 0.1063 0.03
1024 0.0276 0.0384 0.009
2048 0.0154 0.0190 0.007

16384 0.0048 0.0031
32768 0.0021

Table 4. Comparable results for NAMD and Blue Matter running on Blue
Gene/L as reported in the literature: Average elapsed time per time step (in
seconds) using benchmark parameters. For NAMD, separate timings for
cutoff-based and PME calculations were given, and we have combined the
results into a single number assuming one PME calculation every four steps.

Time step Constraints Desmond NAMD
1 fs No 2.0 K/ns 2.8 K/ns
1 fs Yes 0.07 K/ns 0.4 K/ns

2.5 fs Yes 0.07 K/ns 0.9 K/ns
Table 5. Energy drift comparison between Desmond and NAMD for ApoA1
at 300 K. The first row corresponds to the benchmark parameters, the second
row corresponds to the benchmark parameters except for the use of
constraints, and the third row corresponds to production parameters.

We point out in particular that, for ApoA1, Desmond’s

performance on 2048 processors of our cluster slightly
exceeds that of Blue Matter on 32,768 processors of Blue
Gene/L. Desmond on 2048 Opteron processors is 9.5 times
faster than Blue Matter on the same number of Blue Gene/L
processors. Desmond’s performance on 1024 processors of
our cluster exceeds NAMD’s performance on 16,384
processors of Blue Gene/L, the highest level of parallelism
reported in the NAMD tests [24]. The Opteron processors in
our cluster are somewhat faster than the PowerPC 440
processors of Blue Gene/L; our cluster processors have a
theoretical peak of 4.8 billion double precision floating point
operations per second, as compared to 2.8 billion for the Blue
Gene/L processors. On the other hand, Blue Gene/L’s
communication network is faster than our InfiniBand network;
the Blue Gene/L torus network provides an aggregate raw
bandwidth per node of 16.8 Gbps and a nearest-neighbor
latency of 2–3 µs [1], while our network provides an
aggregate raw bandwidth per node of 8.5 Gbps and a nearest-
neighbor latency of approximately 6 µs.

Table 5 shows energy drift rates for Desmond and NAMD
on ApoA1 for several sets of simulation parameters. Because
the Desmond runs used the OPLS-AA 2005 force field while
the NAMD runs used the CHARMM22 force field, the exact
energy drift figures may not be compared strictly. However,
the fact that Desmond’s energy drift is lower than that of
NAMD, which performs most of its computation in double
precision, confirms that Desmond achieves acceptable energy
drift despite its use of single precision computation. Thanks
to the numerical stability of Desmond’s constraint algorithms,
its energy drift drops dramatically, both in absolute terms and
relative to NAMD, when constraints are applied to fix the
lengths of bonds to all hydrogen atoms and the bond angles of
water molecules. In addition, increasing the time step from 1
fs to 2.5 fs in a constrained simulation has a negligible impact
on energy drift in Desmond but a significant impact in

NAMD, suggesting that Desmond is able to use a longer time
step while maintaining low energy drift.

We also quantified simulation accuracy using relative rms
force error, a measure of the error in the calculated
nonbonded forces defined as the root mean squared error in
the force divided by the root mean squared force [41]. For
ApoA1, Desmond’s relative rms force error is lower using
production parameters than using benchmark parameters. In
particular, the relative rms force error using production
parameters is consistently below 10-4; a relative rms force
error below 10-3 is considered sufficiently accurate for
biomolecular MD simulations [47, 48]. For DHFR, the
relative rms force error is identical for benchmark and
production parameters.

The use of production parameters allowed us to more than
double the simulation rates obtained using the benchmark
parameters without increasing energy drift or relative rms
force error. Figure 7 plots simulation rates for ApoA1 and
DHFR using production parameters for various processor
counts in terms of simulated nanoseconds per elapsed day.
The average simulation rate of ApoA1 increased by a factor of
2.5 relative to the rate using benchmark parameters, mostly
due to use of a larger time step and a coarser PME mesh. On
2048 processors, the simulation rate increased by a factor of
2.8. The average simulation rate for DHFR increased by a
factor of 2.7, mostly due to use of a larger time step and less
frequent PME calculation.

For ApoA1, a 14 ns simulation was sustained over 2.8 hours
on 2048 processors at a rate of 120 ns/day. For DHFR, a
simulation on 512 processors (256 nodes) maintained a rate of
173 ns/day. To our knowledge, these ApoA1 and DHFR
simulation rates are the fastest reported for these systems.

Figure 7. Desmond simulation rate for DHFR and ApoA1 using benchmark
and production parameters, using two processes per node and new
communication primitives.

Figure 8. Strong scalability for DHFR and ApoA1, corresponding to the data
in Figure 7.

Figure 8 plots speedup figures for the simulations relative to
performance on 8 processors (i.e., assuming a speedup of 8 for
8 processors). The parallel efficiency is approximately 55
percent for ApoA1 for 2048 processors. The DHFR system
has fewer atoms and less computational work per time step; its
parallel efficiency is approximately 40 percent for 512
processors.

Applications. The proteins used for the performance tests
reported in this paper were chosen to facilitate comparison
with other benchmarks in the literature. Most of our Desmond
simulations, however, have focused on other biomolecular
systems of interest at a basic scientific level and/or in the
context of drug development.

For example, we have studied the sodium-proton antiporter
protein NhaA from E. coli in an effort to describe how this
protein harnesses the electrochemical gradient of protons
across the cell membrane to pump sodium ions out of the cell
[2]. NhaA is critical for the maintenance of intracellular pH
and sodium levels, but from the crystal structure alone it is not
clear how it performs this essential function; molecular
dynamic studies may play a key role in elucidating the
mechanism.

We have investigated several protein kinases, proteins
which play key roles in cellular signaling pathways. Most
protein kinases can exist in both an active and an inactive
conformation; defects which cause some protein kinases to
become stuck in their active conformation are implicated in
certain cancers. We have used molecular dynamics
simulations to investigate elements of the conformational
changes involved in the activation process (i.e., transition
between inactive and active states) of one of these, c-Abl
kinase, the target of the cancer drug Gleevec.

Also of interest to us, and a central practical problem in
drug discovery, is the determination of binding affinities
between small drug-like molecules and drug targets. High

performance molecular dynamics simulations may have the
potential to provide an accurate solution to this problem,
supplementing the faster but highly error-prone technique
currently in use. We have started to investigate the
interactions of a particular membrane-bound receptor protein
implicated in cancer with small molecule inhibitors using
molecular dynamics, as an important practical problem on
which to test various approaches.

We have also used Desmond to simulate fast folding
proteins. The fastest of these fold in a few microseconds or
less, opening up the possibility of directly simulating the
entire folding process. Although the details of folding are
fascinating in themselves, one important reason to study such
systems is that they provide a stern test of modern day
molecular force fields. Hopefully, detailed study of the
failures as well as the successes of current force fields can
lead to a new generation of improved force fields that can be
used to solve further intriguing problems in biology.

7. CONCLUDING REMARKS
We are undertaking a concerted effort to make molecular

dynamics a useful tool in biology, chemistry, and medicine,
particularly by reducing the turn-around time for
computational experiments and enabling simulation of
biochemical events on long time scales. Desmond represents
an effort where we have developed new algorithms and
implementation techniques, as well as MD software of
unprecedented performance that is already being used in
biochemistry research. In this paper we have outlined the
novel methods underlying Desmond’s efficiency and
scalability, and shown that Desmond’s parallel performance
significantly exceeds that of other state-of-the-art codes.
Other papers will present in more detail the specific methods
we have developed, many of which are applicable to particle
simulations in general.

Like established MD codes, Desmond contains a variety of
features that are useful for research in chemistry and
molecular biology. For example, it contains algorithms for
simulations with various types of ensembles, sampling
methods, force fields, and global box shapes. To handle the
large amounts of particle trajectory data, Desmond uses a
system of distributed output files. Desmond also contains a
checkpoint mechanism that allows a bitwise perfect restart of
a simulation that was stopped due to hardware failures or
other reasons. Our continuing efforts with Desmond involve
adding more features without compromising performance.
We plan to release the Desmond software for use by
universities and non-commercial research organizations at no
cost.

ACKNOWLEDGEMENTS
We are grateful to Anne Weber, Christine McLeavey, Ross

Lippert and Brian Towles for their comments and assistance
with this paper. We also wish to thank the referees for their
helpful suggestions.

REFERENCES
[1] G. Almasi, C. Archer, J. G. Castanos, et al., Design and

Implementation of Message-Passing Services for the Blue
Gene/L Supercomputer, IBM J. Res. & Dev., 49(2-3): 393-406,
2005.

[2] I. T. Arkin, H. Xu, K. J. Bowers, et al., Mechanism of a Na+/H+
Antiporter, submitted, 2006.

[3] K. J. Bowers, Speed Optimal Implementation of a Fully
Relativistic 3D Particle Push with a Charge Conserving Current
Accumulate on Modern Processors, presented at 18th
International Conference on the Numerical Simulation of
Plasmas, Cape Cod, MA, 2003.

[4] K. J. Bowers, R. O. Dror, and D. E. Shaw, Overview of Neutral
Territory Methods for the Parallel Evaluation of Pairwise
Particle Interactions, J. Phys. Conf. Ser., 16: 300-304, 2005.

[5] K. J. Bowers, R. O. Dror, and D. E. Shaw, The Midpoint
Method for Parallelization of Particle Simulations, J. Chem.
Phys., 124: 184109, 2006.

[6] K. J. Bowers, R. O. Dror, and D. E. Shaw, Zonal Methods for
the Parallel Execution of Range-Limited N-Body Problems, in
press, J. Comput. Phys., 2006.

[7] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, et al.,
CHARMM: A Program for Macromolecular Energy,
Minimization, and Dynamics Calculations, J. Comput. Chem., 4:
187-217, 1983.

[8] C. L. Brooks, B. M. Pettit, and M. Karplus, Structural and
Energetic Effects of Truncating Long Ranged Interactions in
Ionic and Polar Fluids, J. Chem. Phys., 83(11): 5897-5908,
1985.

[9] F. Cappello and D. Etiemble, MPI Versus MPI+OpenMP on the
IBM SP for the NAS Benchmarks, presented at ACM/IEEE
SC2000 Conference, Dallas, TX, 2000.

[10] D. A. Case, T. E. Cheatham, III, T. Darden, et al., The Amber
Biomolecular Simulation Programs, J. Comput. Chem., 26(16):
1668-1688, 2005.

[11] E. Chow and D. Hysom, Assessing Performance of Hybrid
MPI/OpenMP Programs on SMP Clusters, Lawrence Livermore
National Laboratory UCRL-JC-143957, 2001.

[12] T. Darden, D. York, and L. Pedersen, Particle Mesh Ewald: An
N Log(N) Method for Ewald Sums in Large Systems, J. Chem.
Phys., 98(12): 10089-10092, 1993.

[13] Y. Duan and P. A. Kollman, Pathways to a Protein Folding
Intermediate Observed in a 1-Microsecond Simulation in
Aqueous Solution, Science, 282(5389): 740-744, 1998.

[14] M. Eleftheriou, B. G. Fitch, A. Rayshubskiy, et al., Scalable
Framework for 3D FFTs on the Blue Gene/L Supercomputer:
Implementation and Early Performance Measurements, IBM J.
Res. & Dev., 49(2-3): 457-464, 2005.

[15] B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, et al., Blue Matter:
Strong Scaling of Molecular Dynamics on Blue Gene/L, IBM
RC23888, February 22, 2006.

[16] B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, et al., Blue Matter:
Approaching the Limits of Concurrency for Classical Molecular
Dynamics, IBM RC23956, May 12, 2006.

[17] B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, et al., Blue Matter:
Strong Scaling of Molecular Dynamics on Blue Gene/L, IBM
RC23688, August 5, 2005.

[18] M. Frigo and S. G. Johnson, The Design and Implementation of
FFTW3, Proceedings of the IEEE, 93(2): 216-231, 2005.

[19] R. S. Germain, B. Fitch, A. Rayshubskiy, et al., Blue Matter on
Blue Gene/L: Massively Parallel Computation for Biomolecular
Simulation, presented at 3rd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system
synthesis (CODES+ISSS '05), New York, NY, 2005.

[20] T. A. Halgren, MMFF VII. Characterization of MMFF94,
MMFF94s, and Other Widely Available Force Fields for
Conformational Energies and for Intermolecular-Interaction
Energies and Geometries, J. Comput. Chem., 20(7): 730-748,
1999.

[21] G. S. Heffelfinger, Parallel Atomistic Simulations, Comput.
Phys. Commun., 128(1-2): 219-237, 2000.

[22] W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives,
Development and Testing of the OPLS All-Atom Force Field on
Conformational Energetics and Properties of Organic Liquids, J.
Am. Chem. Soc., 118(45): 11225-11236, 1996.

[23] P. A. Kollman, R. W. Dixon, W. D. Cornell, et al., "The
Development/Application of a "Minimalist" Organic/
Biomolecular Mechanic Forcefield Using a Combination of Ab
Initio Calculations and Experimental Data," in Computer
Simulation of Biomolecular Systems: Theoretical and
Experimental Applications, W. F. van Gunsteren and P. K.
Weiner, Eds. Dordrecht, Netherlands: ESCOM, 1997, 83-96.

[24] S. Kumar, G. Almasi, C. Huang, et al., Achieving Strong
Scaling with NAMD on Blue Gene/L, presented at IEEE
International Parallel & Distributed Processing Symposium,
Rhodes Island, Greece, 2006.

[25] J. Liu, J. Wu, and D. K. Panda, High Performance RDMA-
Based MPI Implementation over InfiniBand, presented at 17th
International Conference on Supercomputing, San Francisco,
CA, 2003.

[26] J. MacKerell, A. D., D. Bashford, M. Bellott, et al., All-Atom
Empirical Potential for Molecular Modeling and Dynamics
Studies of Proteins, J. Phys. Chem. B, 102(18): 3586-3616,
1998.

[27] P. Mark and L. Nilsson, Structure and Dynamics of Liquid
Water with Different Long-Range Interaction Truncation and
Temperature Control Methods in Molecular Dynamics
Simulations, J. Comput. Chem., 23(13): 1211-1219, 2002.

[28] Mellanox Technologies, Mellanox IB-Verbs API (VAPI):
Mellanox Software Programmer's Interface for InfiniBand
Verbs, 2001.

[29] T. Narumi, A. Kawai, and T. Koishi, An 8.61 Tflop/s Molecular
Dynamics Simulation for NaCl with a Special-Purpose
Computer: MDM, presented at ACM/IEEE SC2001 Conference,
Denver, Colorado, 2001.

[30] J. Norberg and L. Nilsson, On the Truncation of Long-Range
Electrostatic Interactions in DNA, Biophys. J., 79(3): 1537-
1553, 2000.

[31] V. S. Pande, I. Baker, J. Chapman, et al., Atomistic Protein
Folding Simulations on the Submillisecond Time Scale Using
Worldwide Distributed Computing, Biopolymers, 68(1): 91-109,
2003.

[32] P. M. Papadopoulos, M. J. Katz, and G. Bruno, NPACI Rocks:
Tools and Techniques for Easily Deploying Manageable Linux
Clusters, Concurrency Comput. Pract. Ex., 15(7-8): 707-725,
2003.

[33] M. Patra, M. Karttunen, T. Hyvönen, et al., Molecular
Dynamics Simulations of Lipid Bilayers: Major Artifacts Due to
Truncating Electrostatic Interactions, Biophys. J., 84: 3636-
3645, 2003.

[34] J. C. Phillips, R. Braun, W. Wang, et al., Scalable Molecular
Dynamics with NAMD, J. Comput. Chem., 26(16): 1781-1802,
2005.

[35] J. C. Phillips, G. Zheng, S. Kumar, et al., NAMD: Biomolecular
Simulation on Thousands of Processors, presented at
ACM/IEEE SC2002 Conference, Baltimore, 2002.

[36] S. Plimpton, Fast Parallel Algorithms for Short-Range
Molecular-Dynamics, J. Comput. Phys., 117(1): 1-19, 1995.

[37] S. Plimpton and B. Hendrickson, Parallel Molecular-Dynamics
Simulations of Organic Materials, Int. J. Mod. Phys. C., 5(2):
295-298, 1994.

[38] S. Plimpton and B. Hendrickson, A New Parallel Method for
Molecular Dynamics Simulation of Macromolecular Systems, J.
Comput. Chem., 17(3): 326-337, 1996.

[39] W. R. P. Scott, P. H. Hünenberger, I. G. Tironi, et al., The
GROMOS Biomolecular Simulation Program Package, J. Phys.
Chem. A, 103(19): 3596-3607, 1999.

[40] M. M. Seibert, A. Patriksson, B. Hess, et al., Reproducible
Polypeptide Folding and Structure Prediction Using Molecular
Dynamics Simulations, J. Mol. Biol., 354(1): 173-183, 2005.

[41] Y. Shan, J. L. Klepeis, M. P. Eastwood, et al., Gaussian Split
Ewald: A Fast Ewald Mesh Method for Molecular Simulation,
J. Chem. Phys., 122: 054101, 2005.

[42] T. Shanley, InfiniBand Network Architecture. Boston: Addison-
Wesley, 2003.

[43] D. E. Shaw, A Fast, Scalable Method for the Parallel Evaluation
of Distance-Limited Pairwise Particle Interactions, J. Comput.
Chem., 26(13): 1318-1328, 2005.

[44] M. Snir, A Note on N-Body Computations with Cutoffs, Theor.
Comput. Syst., 37: 295-318, 2004.

[45] D. van der Spoel, E. Lindahl, B. Hess, et al., GROMACS: Fast,
Flexible, and Free, Journal of Computational Chemistry,
26(16): 1701-1718, 2005.

[46] M. Taiji, T. Narumi, Y. Ohno, et al., Protein Explorer: A
Petaflops Special-Purpose Computer System for Molecular
Dynamics Simulations, presented at ACM/IEEE SC2003
Conference, Phoenix, Arizona, 2003.

[47] R. Zhou and B. J. Berne, A New Molecular Dynamics Method
Combining the Reference System Propagator Algorithm with a
Fast Multipole Method for Simulating Proteins and Other
Complex Systems, J. Chem. Phys., 103(21): 9444-9459, 1995.

[48] R. Zhou, E. Harder, H. Xu, et al., Efficient Multiple Time Step
Method for Use with Ewald and Particle Mesh Ewald for Large
Biomolecular Systems, J. Chem. Phys., 115(5): 2348-2358,
2001.

