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Introduction
ul Yufuful Y

"= The aim of this training is to be familiar with :

— identifying recurrent bugs
— tracing them with the appropriate tool

— solving them

" Debugging is not magic, it is science. With the
appropriate approach, you will solve 99% of code related

bugs in no time

= Versions of compiler used :
— gcc/gfortran : 4.8.2 (from ubuntu 14.04x64)
— icc/ifort : 14.0.3 (from parallel studio 2013 SP1 update 3)
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2. Unix in 10 minutes

3. Tools used
1. Preprocessing
2. Valgrind
3. GDB
4. Why debugging
5. Common bugs and method to catch them :
Floating point exceptions (Invalid, Overflow, Zero)
. Uninitialized values reading
Allocation/deallocation issues
Array out of bound reading/writing
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Memory leak
Stack overflow
8. Buffer overflow
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1. History ujuiuie] Y

= 1842 : Ada Lovelace, First program of history

= 1880s : Herman Hollerith, Data on physical
medium

= 1940s : Von Neumann Architecture allow
programs to be stored in memory

" 1949 : Assembly language replace machine
specific instructions, Text format

= 1947 : Grace Hopper, debugging Fem E R
= 1949 : Grace Hopper, first compiler (A) o
= 1954 : FORTRAN, first high level language 2 B & smee
= 1971 : Clanguage replace B LT
"= 1983 : B. Stroustrup, C++ S i
= 1991 : HTML

= 1995 : JAVA
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1. History
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2. Unix in 10 minutes ujuiuiu] s

" Learn (or remember) unix basic commands.

— Unix in 10 minutes :
http://freeengineer.org/learnUNIXin10minutes.html
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Summary ujuiuie] Y
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3. Tools used ujuiuiel Y

" Your allies in the battle:
- Preprocessing

- Valgrind
- GDB

- Intel Inspector (not seen in this training :
https://software.intel.com/en-us/articles/intel-
inspector-xe-2011-documentation)

= More tools can be found on the web
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3.1. Preprocessing ujuiuie] Y

" Few words about Preprocessing
— Tool used in many languages, here in C / Fortran
— Allow to compile only wanted part of code
— Useful to debug (MPI for example)

#ifdef MYVALUE
#ifndef MYVALUE
#else

#endif

= We will use preprocessing to simulate bugs one by one
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3.1. Preprocessing ujuiuie] Y

" Few words about Preprocessing

program helloorhey $ gfortran myfile.f90
Warning: myfile.f90:5: lllegal preprocessor directive
implicit none Warning: myfile.f90:7: lllegal preprocessor directive
Warning: myfile.f90:9: lllegal preprocessor directive
#ifdef HELLO Warning: myfile.f90:11: lllegal preprocessor directive
print *, "Hello world ! « $ ./a.out
#endif Hello world !
Hey !
#ifdef HEY $ gfortran -cpp myfile.f90
print *,‘Hey ! $ ./a.out
#endif $ gfortran -cpp -DHELLO myfile.f90
$ ./a.out
end program helloorhey Hello world !
$ gfortran -cpp -DHEY myfile.f90
$ ./a.out
Hey !
$
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3.2.

Debugging HPC programs - Benoit Leveugle

A AL A 1

Valgrind Valerind aghnowL

Valgrind is a powerful memory checking tool. It is able to
catch use of uninitialized values, out of bound access,
stack overflow, etc. However, it will not see fpe and some
other bugs.

Valgrind has a tool to check memory, a tool to check
memory leak, a tool to profile the code (use with
KCacheGrind), etc.

Valgrind is able to watch only a part of the code in order
to avoid other warnings or slowdowns.

If compiled manually, Valgrind is able to debug MPI
communications.

WARNING : Valgrind will displays errors if intel
environment is not loaded when debugging an intel
compiled program



3.2. Valgrind

= How to use valgrind ? (very verbose)

$ gfortran -g -fbacktrace myfile.f90 -o myprog.exe

$ valgrind ./myprog.exe

==3306== Memcheck, a memory error detector

==3306== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.
==3306== Using Valgrind-3.10.0.SVN and LibVEX; rerun with -h for copyright info

3306== Invalid read of size 8
3306== at 0x40060F: main (deb_c.c:191)
==3306== Address 0x51fd090 is 0 bytes after a block of size 80 alloc'd
at 0x4C2AB80: malloc (in /usr/lib/valgrind/vgpreload memcheck-amd64-

==3306== by 0x4005CE: main (deb_c.c:185)

10.000000 0.000000

==3306==

==3306== HEAP SUMMARY:

=3306==  in use at exit: 0 bytes in 0 blocks

3306== total heap usage: 1 allocs, 1 frees, 80 bytes allocated

3306==

3306== All heap blocks were freed -- no leaks are possible

3306==

3306== For counts of detected and suppressed errors, rerun with: -v
3306== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

B2 | | | [ | B
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3.3. GDB ujuiuiu] s

GDB
= GDB is the gnu debugger, available with gcc/gfortran

" GDB is able to execute program step by step
watching desired variables, break when a
condition is true or at a specific line then display
code for this area, etc.

= GDB is able to modify a variable on the fly

= GDB is able to backtrace an error to provide more
iInformation on it

" GDB overhead is lower than valgrind's overhead

Debugging HPC programs - Benoit Leveugle



3.3. GDB ujuiuiu] s

= How to use gdb? (basic commands, more at
http://en.wikibooks.org/wiki/GCC_Debugging/gdb)

$ gfortran -g -fbacktrace myfile.f90 -o myprog.exe

‘ $ gdb myprog.exe

" "run" run the program
" "break" set a "breakpoint" at a certain area \ function

" "next" execute next line of code (after a break)

= "continue" go to next breakpoint or end of program

= "print" print out a variables \ expressions contents

= "disp" print out a variable \ expression value every step
= "cond" conditional

(gdb) set variable x=12

n n (gdb) break test.cpp:2
- set Change d Va|Ue Breakpoint 1 at 0x1234: file test.cpp, line 2.
- uquitu exit gdb (gdb) cond 1 i==2147483648

(gdb) run
" "backtrace" get informations on program state at exit
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Summary ujuiuie] Y

4. Why debugging
5. Common bugs and method to catch them :
1. Floating point exceptions (Invalid, Overflow, Zero)
. Uninitialized values reading
. Allocation/deallocation issues
Array out of bound reading/writing
O issues
Memory leak
Stack overflow
8. Buffer overflow

6. Conclusion and useful links

NOUAWN
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4. Why debugging DOOOWT

* When should you think there is a bug ?

— Program returns an error message

— Program returns an error exit code (other than 0)
— Program finishes with NaN or +Inf values

— Program ends unexpectedly

— Other cases, many scenario are possible
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4. Why debugging DOOOWT

mpw to get the exit code of a program ?

"= $? gives you the exit code of the last executed

$ gfortran myfile.f90 command. )
$ echo $? " Other than 0 means something went wrong, and
0 this code may help you understand why.

$ ./a.out
Hello world !
$ echo $7?
0 $ ./a.out
$
Program received signal SIGSEGV:
Segmentation fault - invalid memory reference.
$ gfortran myfile.f90
myfile.f90:3: Backtrace for this error:
#0 Ox7FFC993C87D7

mplicit none #1 Ox7FFC993C8DDE

1 #2 Ox7FFC9901FC2F

Error: Unclassifiable statement at (1) Segmentation fault (core dumped)
$ echo $7? $ echo $7?

1 139

$ $
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Summary

5. Common bugs and method to catch them :

1.
. Uninitialized values reading

8.

NOUAWN

Floating point exceptions (Invalid, Overflow, Zero)

Allocation/deallocation issues
Array out of bound reading/writing
O issues

Memory leak

Stack overflow

Buffer overflow

6. Conclusion and useful links

Debugging HPC programs - Benoit Leveugle 21



5. Common bugs and method to catch them ujuiuiel Y

= Common bugs:

— Floating point exceptions (Invalid, Overflow, Zero)
— Uninitialized values reading

— Allocation/deallocation issues

— Array out of bound reading/writing

— 10 issues

— Memory leak

— Stack overflow

— Buffer overflow

— Algorithm/mathematical bugs (the worsts, especially with
iterative methods). This last one will not generate an error,
but results will be wrong. No specific methods, be smart.
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5.1. Common bugs - Floating point exceptions ujuiuiey Y

" Floating point exceptions

- Zero
« When you divide by zero, very common in HPC

A
= 400
0.0

- Invalid
« When the operation is mathematicaly impossible
* acos(10.0) = NaN

- Overflow/Underflow

« When you reach maximum/minimum number that system can
hold

* exp(10E15) = A huge number

= FPEs will not generate errors at runtime !
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5.1. Common bugs - Floating point exceptions uiuiuiuy Y
WY juiuiul ja
Compiler Fortran
gfortran -g -fbacktrace-ffpe-trap=zero,underflow,overflow,invalid will
catch fpe at runtime
ifort -g -traceback -fpeO will catch fpe at runtime
Compiler C
gcc Add #include <fenv.h> and start with
. feenableexcept(FE_DIVBYZERO| FE_INVALID|FE_OVERFLOW);
ICC Or use:
if (fetestexcept(FE_OVERFLOW | ...)) puts ("FE_OVERFLOW is set");

#include <fenv.h>

int main(int argc, char **argv)

{
feenableexcept(FE_DIVBYZERO| FE_INVALID|FE_OVERFLOW);
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5.2.  Common bugs - Uninitialized values ujufuiey Y

Uninitialized values reading

— When you try to read a non initialized value

— The program may not stop, and all following calculations will
be based on a random value

— Common with MPI programs (Ghost, etc)

= Static variable : variable uninitialized is static
— no error at runtime

" Dynamic variable : variable uninitialized is dynamic
— no error at runtime

" Not allocated variable : try to use a non allocated
dynamic variable

— error : segmentation fault
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5.2.

Common bugs - Uninitialized values ujun!

Compiler Fortran

gfortran

When needed to use a debugging tool, do not forget -g -fbacktrace to get
information on bug position in code

= static variable :

-Wuninitialized -O -g -fbacktrace will display a warning

Valgrind : “Conditional jump or move depends on uninitialised value(s)”

= dynamic variable :

Valgrind : “Conditional jump or move depends on uninitialised value(s)”

= not allocated variable :

-g -fbacktrace will catch it (size 0 or huge random number)

ifort

When needed to use a debugging tool, do not forget -g -traceback to get
information on bug position in code

= static variable :

-check all (or -check uninit) catch it, -ftrapuv may help

= dynamic variable :

Valgrind : “Conditional jump or move depends on uninitialised value(s)”

= not allocated variable :

-g -traceback will catch it (size 0 or huge random number)
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5.2.

e 1 8
Common bugs - Uninitialized values ujufuiul Y

Compiler C

gcc When needed to use a debugging tool, do not forget -g to get information on
bug position in code
= static variable :
-Wuninitialized or -wall will display a warning
Valgrind : “Conditional jump or move depends on uninitialised value(s)”
= dynamic variable :
Valgrind : “Conditional jump or move depends on uninitialised value(s)”
= not allocated variable :
-Wuninitialized or -wall will display a warning
Valgrind : “Conditional jump or move depends on uninitialised value(s)”
gdb : with backtrace
icc When needed to use a debugging tool, do not forget -g -traceback to get

information on bug position in code

= static variable :

-Wuninitialized will display a warning, -g -check=uninit will catch it at
runtime

= dynamic variable :

Valgrind : “Conditional jump or move depends on uninitialised value(s)”
= not allocated variable :

-Wuninitialized will display a warning, -g -check=uninit will catch it at
runtime

Debugging HPC programs - Benoit Leveugle 27



5.3.  Common bugs - Allocation ujuiuiel Y

= Allocation issues

" Try do free an non allocated variable
— Will generate an error at runtime (not with gcc)
" Try do allocate an already allocated variable
— Will generate an error at runtime (not in C)

" Not freed memory
— No errors
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5.3.

Common bugs - Allocation ujuin!

Compiler Fortran

gfortran

When needed to use a debugging tool, do not forget -g -fbacktrace to get
information on bug position in code

= free an non allocated variable:

-g -fbacktrace will catch it at runtime

= allocate an already allocated variable:

-g -fbacktrace will catch it at runtime

= Not freed memory:

Valgrind will catch it with --leak-check=full

ifort

When needed to use a debugging tool, do not forget -g -traceback to get
information on bug position in code

= free an non allocated variable:

-g -traceback will catch it at runtime

= allocate an already allocated variable:

-g -traceback will catch it at runtime

= Not freed memory:

Valgrind will catch it with --leak-check=full
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5.3. Common bugs - Allocation ujuin!

Compiler C

gcc When needed to use a debugging tool, do not forget -g to get information on
bug position in code

= free an non allocated variable:

-Wuninitialized or -wall will display a warning

Valgrind : “Conditional jump or move depends on uninitialised value(s)”

= allocate an already allocated variable:

Valgrind will catch it with --leak-check=full

= Not freed memory:

Valgrind will catch it with --leak-check=full

icc When needed to use a debugging tool, do not forget -g -traceback to get
information on bug position in code

= free an non allocated variable:

-Wuninitialized will display a warning, -g -check=uninit will catch it at
runtime

= allocate an already allocated variable:

Valgrind will catch it with --leak-check=full

= Not freed memory:

Valgrind will catch it with --leak-check=full
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5.4. Common bugs - Array out of bounds ujuiuiel Y

" Array out of bound reading/writing
— Will not generate errors most of the time
— Very common in HPC

= Often called "Gardening" when memory is not protected
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5.4. Common bugs - Array out of bounds ujuln!

Compiler Fortran

gfortran -g -fbacktrace -fbounds-check will catch it at runtime

ifort -g -traceback -check all (or -check bounds) will catch it at runtime
Compiler C

gcc When needed to use a debugging tool, do not forget -g to get

information on bug position in code

Valgrind : “Invalid read/write of size 8”

Or patch gcc and recompile it with bounds checking
(http://sourceforge.net/projects/boundschecking/)

icc -g -traceback -check-pointers=rw will catch it at runtime, however
-check-pointers=rw makes all other debugging options not working, be
careful
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5.5.  Common bugs - 10 ujuiuiel Y

= |O issues

" Errors are often very explicit. No need to use a debugging
tool. However, Valgrind and fpe options can detect some
related errors (bad reading = bad initialized value or =
fpe, etc.)

" Do not forget to put -g -fbacktrace (gcc/gfortran) or -g
-traceback (icc/ifort) to get useful error information.
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5.6. Common bugs - Memory leak ujuiuiel Y

" Memory leak

" Can be the reason of a segmentation fault (signal 11) or
an unexpected code halt. Memory growth and growth
until it reach limit which halts the program.

" |Impossible with recent Fortran compilers if not using
"pointers".

" |f using Fortran pointers or C, then Valgrind will catch it !
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5.6. Common bugs - Memory leak ujuln!

Compiler Fortran

gfortran When needed to use a debugging tool, do not forget -g -fbacktrace to
get information on bug position in code
Valgrind will catch it with --leak-check=full

ifort When needed to use a debugging tool, do not forget -g -traceback to

get information on bug position in code
Valgrind will catch it with --leak-check=full

Compiler C

gcc When needed to use a debugging tool, do not forget -g to get
information on bug position in code
Valgrind will catch it with --leak-check=full

icc When needed to use a debugging tool, do not forget -g -traceback to

get information on bug position in code
Valgrind will catch it with --leak-check=full
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5.7.  Common bugs - Stack Overflow ujuiuiel Y

= Stack Overflow

" Extremely common with bad written programs

" More common with gcc/gfortran programs (icc/ifort are
often smarter with memory)

" More common with multithreaded programs, like OpenMP
programs

— Each son has a very small stack which is rapidly ful

" Will result in a segmentation fault
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5.7. Common bugs - Stack Overflow ujun!

Compiler Fortran

gfortran When needed to use a debugging tool, do not forget -g -fbacktrace to
get information on bug position in code
Valgrind will catch it
gdb will catch it with backtrace but not a lot informations

ifort When needed to use a debugging tool, do not forget -g -traceback to

get information on bug position in code
Valgrind will catch it
gdb will catch it with backtrace but not a lot informations

Compiler C

gcc When needed to use a debugging tool, do not forget -g to get
information on bug position in code
Valgrind will catch it
gdb will catch it with backtrace but not a lot informations

icc When needed to use a debugging tool, do not forget -g -traceback to

get information on bug position in code
Valgrind will catch it
gdb will catch it with backtrace but not a lot informations
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5.8. Common bugs - Buffer Overflow ujuiuiel Y

= Buffer Overflow
" Famous for security reasons

" More common in C than in Fortran
" Will generate an error, except with icc

"= Can ask gcc to ignore it using : -fno-stack-protector
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5.8. Common bugs - Buffer Overflow DOOOWT
WY _juluiul
gfortran Error is self explaining
ifort Error is self explaining
Compiler C
gcc When needed to use a debugging tool, do not forget -g to get

information on bug position in code
gdb will catch it with backtrace

icc -g -traceback -check-pointers=rw will catch it at runtime, however
-check-pointers=rw makes all other debugging options not working, be
careful
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6. Conclusion and useful links
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6. Conclusion and useful links ujuiuiel Y

m Veteran advices :

" NaN is not equal to itself generally (depends on platform
and compiler)

" Programs may not give the same results depending of
the optimizations options. Using multi threading/MPI also
provides different results for each run.

" Some optimization options may alter precision

" Remember that terminal ouput may not refresh instantly:
using "hello 1", "hello 2", etc may result in wrong
location, use flush (may slow down the program)

gcc/icc fflush(stdout);

gfortran call flush()

ifort call flush(ierror) (segfault if no
ierror)
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6. Conclusion and useful links ujuiuiel Y

mVeteran advices :

= |f your bug is impossible to locate (mathematical or
algorithm error), ask someone else to check, most of the
time bug is right in front of you but your knowledge of
the code prevent you from seeing it

" Never debug more than half a day, this could be
worst (introduce more bugs to resolve one), and
your brain needs to "think" away from a screen

" Automatic testing can prevent debuging
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