
Debugging HPC programs, C and 
Fortran
 
CINES, Montpellier

Slides by Benoît Leveugle
Talk by Victor Cameo Ponz



Debugging HPC programs - Benoît Leveugle

Introduction

 The aim of this training is to be familiar with :
− identifying recurrent bugs
− tracing them with the appropriate tool
− solving them

 Debugging is not magic, it is science. With the 
appropriate approach, you will solve 99% of code related 
bugs in no time

 Versions of compiler used :
− gcc/gfortran : 4.8.2 (from ubuntu 14.04x64)
− icc/ifort : 14.0.3 (from parallel studio 2013 SP1 update 3)

2



Debugging HPC programs - Benoît Leveugle

Summary

1. History
2. Unix in 10 minutes
3. Tools used

1. Preprocessing
2. Valgrind
3. GDB

4. Why debugging
5. Common bugs and method to catch them :

1. Floating point exceptions (Invalid, Overflow, Zero)
2. Uninitialized values reading
3. Allocation/deallocation issues
4. Array out of bound reading/writing
5. IO issues
6. Memory leak
7. Stack overflow
8. Buffer overflow

6. Conclusion and useful links

3



Debugging HPC programs - Benoît Leveugle

Summary

1. History
2. Unix in 10 minutes
3. Tools used

1. Preprocessing
2. Valgrind
3. GDB

4. Why debugging
5. Common bugs and method to catch them :

1. Floating point exceptions (Invalid, Overflow, Zero)
2. Uninitialized values reading
3. Allocation/deallocation issues
4. Array out of bound reading/writing
5. IO issues
6. Memory leak
7. Stack overflow
8. Buffer overflow

6. Conclusion and useful links

4



Debugging HPC programs - Benoît Leveugle

1.  History

 1842 : Ada Lovelace, First program of history
 1880s : Herman Hollerith, Data on physical 

medium
 1940s : Von Neumann Architecture allow 

programs to be stored in memory
 1949 : Assembly language replace machine 

specific instructions, Text format
 1947 : Grace Hopper, debugging
 1949 : Grace Hopper, first compiler (A)
 1954 : FORTRAN, first high level language
 1971 : C language replace B
 1983 : B. Stroustrup, C++
 1991 : HTML
 1995 : JAVA

5



Debugging HPC programs - Benoît Leveugle

1.  History

6



Debugging HPC programs - Benoît Leveugle

Summary

1. History
2. Unix in 10 minutes
3. Tools used

1. Preprocessing
2. Valgrind
3. GDB

4. Why debugging
5. Common bugs and method to catch them :

1. Floating point exceptions (Invalid, Overflow, Zero)
2. Uninitialized values reading
3. Allocation/deallocation issues
4. Array out of bound reading/writing
5. IO issues
6. Memory leak
7. Stack overflow
8. Buffer overflow

6. Conclusion and useful links

7



Debugging HPC programs - Benoît Leveugle

2. Unix in 10 minutes

 Learn (or remember) unix basic commands.
− Unix in 10 minutes : 

http://freeengineer.org/learnUNIXin10minutes.html

8



Debugging HPC programs - Benoît Leveugle

Summary

1. History
2. Unix in 10 minutes
3. Tools used

1. Preprocessing
2. Valgrind
3. GDB

4. Why debugging
5. Common bugs and method to catch them :

1. Floating point exceptions (Invalid, Overflow, Zero)
2. Uninitialized values reading
3. Allocation/deallocation issues
4. Array out of bound reading/writing
5. IO issues
6. Memory leak
7. Stack overflow
8. Buffer overflow

6. Conclusion and useful links

9



Debugging HPC programs - Benoît Leveugle

3. Tools used

 Your allies in the battle:
– Preprocessing

– Valgrind

– GDB

– Intel Inspector (not seen in this training : 
https://software.intel.com/en-us/articles/intel-
inspector-xe-2011-documentation)

 More tools can be found on the web

10



Debugging HPC programs - Benoît Leveugle

3.1. Preprocessing

 Few words about Preprocessing
− Tool used in many languages, here in C / Fortran
− Allow to compile only wanted part of code
− Useful to debug (MPI for example)

#ifdef MYVALUE
#ifndef MYVALUE
#else
#endif

 We will use preprocessing to simulate bugs one by one

11



Debugging HPC programs - Benoît Leveugle

3.1. Preprocessing

 Few words about Preprocessing
− Tool used in many languages, here in C / Fortran
− Allow to compile only wanted part of code
− Useful to debug (MPI for example)

#ifdef MYVALUE
#ifndef MYVALUE
#else
#endif

 We will use preprocessing to simulate bugs one by one

12



Debugging HPC programs - Benoît Leveugle

3.1. Preprocessing

 Few words about Preprocessing

13

program helloorhey

implicit none

#ifdef HELLO
   print *, "Hello world ! « 
#endif

#ifdef HEY
   print *,‘Hey !’
#endif

end program helloorhey

$ gfortran myfile.f90 
Warning: myfile.f90:5: Illegal preprocessor directive
Warning: myfile.f90:7: Illegal preprocessor directive
Warning: myfile.f90:9: Illegal preprocessor directive
Warning: myfile.f90:11: Illegal preprocessor directive
$ ./a.out 
 Hello world !
 Hey !
$ gfortran -cpp myfile.f90 
$ ./a.out 
$ gfortran -cpp -DHELLO myfile.f90 
$ ./a.out 
 Hello world !
$ gfortran -cpp -DHEY myfile.f90 
$ ./a.out 
 Hey !
$ 



Debugging HPC programs - Benoît Leveugle

3.2. Valgrind

 Valgrind is a powerful memory checking tool. It is able to 
catch use of uninitialized values, out of bound access, 
stack overflow, etc. However, it will not see fpe and some 
other bugs.

 Valgrind has a tool to check memory, a tool to check 
memory leak, a tool to profile the code (use with 
KCacheGrind), etc.

 Valgrind is able to watch only a part of the code in order 
to avoid other warnings or slowdowns.

 If compiled manually, Valgrind is able to debug MPI 
communications.

 WARNING : Valgrind will displays errors if intel 
environment is not loaded when debugging an intel 
compiled program

14



Debugging HPC programs - Benoît Leveugle

3.2. Valgrind

 How to use valgrind ? (very verbose)

15

$ gfortran -g -fbacktrace myfile.f90 -o myprog.exe 

$ valgrind ./myprog.exe
==3306== Memcheck, a memory error detector
==3306== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.
==3306== Using Valgrind-3.10.0.SVN and LibVEX; rerun with -h for copyright info
==3306== Command: ./a.out
==3306== 
==3306== Invalid read of size 8
==3306==    at 0x40060F: main (deb_c.c:191)
==3306==  Address 0x51fd090 is 0 bytes after a block of size 80 alloc'd
==3306==    at 0x4C2AB80: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-
linux.so)
==3306==    by 0x4005CE: main (deb_c.c:185)
==3306== 
 10.000000 0.000000 
==3306== 
==3306== HEAP SUMMARY:
==3306==     in use at exit: 0 bytes in 0 blocks
==3306==   total heap usage: 1 allocs, 1 frees, 80 bytes allocated
==3306== 
==3306== All heap blocks were freed -- no leaks are possible
==3306== 
==3306== For counts of detected and suppressed errors, rerun with: -v
==3306== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)
$



Debugging HPC programs - Benoît Leveugle

3.3. GDB

 GDB is the gnu debugger, available with gcc/gfortran
 GDB is able to execute program step by step 

watching desired variables, break when a 
condition is true or at a specific line then display 
code for this area, etc.

 GDB is able to modify a variable on the fly
 GDB is able to backtrace an error to provide more 

information on it
 GDB overhead is lower than valgrind's overhead

16

GDB



Debugging HPC programs - Benoît Leveugle

3.3. GDB

 How to use gdb? (basic commands, more at 
http://en.wikibooks.org/wiki/GCC_Debugging/gdb)

 "run" run the program
 "break" set a "breakpoint" at a certain area \ function
 "next" execute next line of code (after a break)
 "continue" go to next breakpoint or end of program
 "print" print out a variables \ expressions contents
 "disp" print out a variable \ expression value every step
 "cond" conditional
 "set" change a value
 "quit" exit gdb
 "backtrace" get informations on program state at exit

17

$ gfortran -g -fbacktrace myfile.f90 -o myprog.exe 

$ gdb myprog.exe

(gdb) set variable x=12
(gdb) break test.cpp:2
Breakpoint 1 at 0x1234: file test.cpp, line 2.
(gdb) cond 1 i==2147483648
(gdb) run



Debugging HPC programs - Benoît Leveugle

Summary

1. History
2. Unix in 10 minutes
3. Tools used

1. Preprocessing
2. Valgrind
3. GDB

4. Why debugging
5. Common bugs and method to catch them :

1. Floating point exceptions (Invalid, Overflow, Zero)
2. Uninitialized values reading
3. Allocation/deallocation issues
4. Array out of bound reading/writing
5. IO issues
6. Memory leak
7. Stack overflow
8. Buffer overflow

6. Conclusion and useful links

18



Debugging HPC programs - Benoît Leveugle

4. Why debugging

 When should you think there is a bug ?

− Program returns an error message
− Program returns an error exit code (other than 0)
− Program finishes with NaN or +Inf values
− Program ends unexpectedly
− Other cases, many scenario are possible

19



Debugging HPC programs - Benoît Leveugle

4. Why debugging

How to get the exit code of a program ?

20

$ gfortran myfile.f90 
$ echo $?
0
$ ./a.out 
 Hello world !
$ echo $?
0
$

$ ./a.out 

Program received signal SIGSEGV: 
Segmentation fault - invalid memory reference.

Backtrace for this error:
#0  0x7FFC993C87D7
#1  0x7FFC993C8DDE
#2  0x7FFC9901FC2F
Segmentation fault (core dumped)
$ echo $?
139
$ 

$ gfortran myfile.f90 
myfile.f90:3:

mplicit none
1
Error: Unclassifiable statement at (1)
$ echo $?
1
$

 $? gives you the exit code of the last executed 
command.

 Other than 0 means something went wrong, and 
this code may help you understand why.



Debugging HPC programs - Benoît Leveugle

Summary

1. History
2. Unix in 10 minutes
3. Tools used

1. Preprocessing
2. Valgrind
3. GDB

4. Why debugging
5. Common bugs and method to catch them :

1. Floating point exceptions (Invalid, Overflow, Zero)
2. Uninitialized values reading
3. Allocation/deallocation issues
4. Array out of bound reading/writing
5. IO issues
6. Memory leak
7. Stack overflow
8. Buffer overflow

6. Conclusion and useful links

21



Debugging HPC programs - Benoît Leveugle

5. Common bugs and method to catch them

 Common bugs :

− Floating point exceptions (Invalid, Overflow, Zero)
− Uninitialized values reading
− Allocation/deallocation issues
− Array out of bound reading/writing
− IO issues
− Memory leak
− Stack overflow
− Buffer overflow

− Algorithm/mathematical bugs (the worsts, especially with 
iterative methods). This last one will not generate an error, 
but results will be wrong. No specific methods, be smart.

22



Debugging HPC programs - Benoît Leveugle

5.1. Common bugs - Floating point exceptions

  

23



Debugging HPC programs - Benoît Leveugle

5.1. Common bugs - Floating point exceptions

24

Compiler Fortran

gfortran -g -fbacktrace-ffpe-trap=zero,underflow,overflow,invalid will 
catch fpe at runtime

ifort -g -traceback -fpe0 will catch fpe at runtime

Compiler C

gcc Add #include <fenv.h> and start with
feenableexcept(FE_DIVBYZERO| FE_INVALID|FE_OVERFLOW);
Or use:
if (fetestexcept(FE_OVERFLOW | ...)) puts ("FE_OVERFLOW is set");

icc

#include <fenv.h>

int main(int argc, char **argv)
{
feenableexcept(FE_DIVBYZERO| FE_INVALID|FE_OVERFLOW);
…
}



Debugging HPC programs - Benoît Leveugle

5.2. Common bugs - Uninitialized values 

 Uninitialized values reading

− When you try to read a non initialized value
− The program may not stop, and all following calculations will 

be based on a random value
− Common with MPI programs (Ghost, etc)

 Static variable : variable uninitialized is static
− no error at runtime

 Dynamic variable : variable uninitialized is dynamic
− no error at runtime

 Not allocated variable : try to use a non allocated 
dynamic variable
− error : segmentation fault

25



Debugging HPC programs - Benoît Leveugle

5.2. Common bugs - Uninitialized values 

26

Compiler Fortran

gfortran When needed to use a debugging tool, do not forget -g -fbacktrace to get 
information on bug position in code
 static variable :
-Wuninitialized -O -g -fbacktrace will display a warning
Valgrind : “Conditional jump or move depends on uninitialised value(s)”
 dynamic variable :
Valgrind : “Conditional jump or move depends on uninitialised value(s)”
 not allocated variable :
-g -fbacktrace will catch it (size 0 or huge random number)

ifort When needed to use a debugging tool, do not forget -g -traceback to get 
information on bug position in code
 static variable :
-check all (or -check uninit) catch it, -ftrapuv may help
 dynamic variable :
Valgrind : “Conditional jump or move depends on uninitialised value(s)”
 not allocated variable :
-g -traceback will catch it (size 0 or huge random number)



Debugging HPC programs - Benoît Leveugle

5.2. Common bugs - Uninitialized values 

27

Compiler C

gcc When needed to use a debugging tool, do not forget -g to get information on 
bug position in code
 static variable :
-Wuninitialized or -wall will display a warning
Valgrind : “Conditional jump or move depends on uninitialised value(s)”
 dynamic variable :
Valgrind : “Conditional jump or move depends on uninitialised value(s)”
 not allocated variable :
-Wuninitialized or -wall will display a warning
Valgrind : “Conditional jump or move depends on uninitialised value(s)”
gdb : with backtrace

icc When needed to use a debugging tool, do not forget -g -traceback to get 
information on bug position in code
 static variable :
-Wuninitialized will display a warning, -g -check=uninit will catch it at 
runtime
 dynamic variable :
Valgrind : “Conditional jump or move depends on uninitialised value(s)”
 not allocated variable :
-Wuninitialized will display a warning, -g -check=uninit will catch it at 
runtime



Debugging HPC programs - Benoît Leveugle

5.3. Common bugs - Allocation

 Allocation issues

 Try do free an non allocated variable
− Will generate an error at runtime (not with gcc)

 Try do allocate an already allocated variable
− Will generate an error at runtime (not in C)

 Not freed memory
− No errors

28



Debugging HPC programs - Benoît Leveugle

5.3. Common bugs - Allocation

29

Compiler Fortran

gfortran When needed to use a debugging tool, do not forget -g -fbacktrace to get 
information on bug position in code
 free an non allocated variable:
-g -fbacktrace will catch it at runtime
 allocate an already allocated variable:
-g -fbacktrace will catch it at runtime
 Not freed memory:
Valgrind will catch it with --leak-check=full

ifort When needed to use a debugging tool, do not forget -g -traceback to get 
information on bug position in code
 free an non allocated variable:
-g -traceback will catch it at runtime
 allocate an already allocated variable:
-g -traceback will catch it at runtime
 Not freed memory:
Valgrind will catch it with --leak-check=full



Debugging HPC programs - Benoît Leveugle

5.3. Common bugs - Allocation

30

Compiler C

gcc When needed to use a debugging tool, do not forget -g to get information on 
bug position in code
 free an non allocated variable:
-Wuninitialized or -wall will display a warning
Valgrind : “Conditional jump or move depends on uninitialised value(s)”
 allocate an already allocated variable:
Valgrind will catch it with --leak-check=full
 Not freed memory:
Valgrind will catch it with --leak-check=full

icc When needed to use a debugging tool, do not forget -g -traceback to get 
information on bug position in code
 free an non allocated variable:
-Wuninitialized will display a warning, -g -check=uninit will catch it at 
runtime
 allocate an already allocated variable:
Valgrind will catch it with --leak-check=full
 Not freed memory:
Valgrind will catch it with --leak-check=full



Debugging HPC programs - Benoît Leveugle

5.4. Common bugs - Array out of bounds

 Array out of bound reading/writing
− Will not generate errors most of the time
− Very common in HPC

 Often called "Gardening" when memory is not protected

31



Debugging HPC programs - Benoît Leveugle

5.4. Common bugs - Array out of bounds

32

Compiler Fortran

gfortran -g -fbacktrace -fbounds-check will catch it at runtime

ifort -g -traceback -check all (or -check bounds) will catch it at runtime

Compiler C

gcc When needed to use a debugging tool, do not forget -g to get 
information on bug position in code
Valgrind : “Invalid read/write of size 8”
Or patch gcc and recompile it with bounds checking 
(http://sourceforge.net/projects/boundschecking/)

icc -g -traceback -check-pointers=rw will catch it at runtime, however 
-check-pointers=rw makes all other debugging options not working, be 
careful



Debugging HPC programs - Benoît Leveugle

5.5. Common bugs - IO

 IO issues

 Errors are often very explicit. No need to use a debugging 
tool. However, Valgrind and fpe options can detect some 
related errors (bad reading = bad initialized value or = 
fpe, etc.)

 Do not forget to put -g -fbacktrace (gcc/gfortran) or -g 
-traceback (icc/ifort) to get useful error information.

33



Debugging HPC programs - Benoît Leveugle

5.6. Common bugs - Memory leak

 Memory leak

 Can be the reason of a segmentation fault (signal 11) or 
an unexpected code halt. Memory growth and growth 
until it reach limit which halts the program.

 Impossible with recent Fortran compilers if not using 
"pointers".

 If using Fortran pointers or C, then Valgrind will catch it !

34



Debugging HPC programs - Benoît Leveugle

5.6. Common bugs - Memory leak

35

Compiler Fortran

gfortran When needed to use a debugging tool, do not forget -g -fbacktrace to 
get information on bug position in code
Valgrind will catch it with --leak-check=full

ifort When needed to use a debugging tool, do not forget -g -traceback to 
get information on bug position in code
Valgrind will catch it with --leak-check=full

Compiler C

gcc When needed to use a debugging tool, do not forget -g to get 
information on bug position in code
Valgrind will catch it with --leak-check=full

icc When needed to use a debugging tool, do not forget -g -traceback to 
get information on bug position in code
Valgrind will catch it with --leak-check=full



Debugging HPC programs - Benoît Leveugle

5.7. Common bugs - Stack Overflow

 Stack Overflow

 Extremely common with bad written programs
 More common with gcc/gfortran programs (icc/ifort are 

often smarter with memory)
 More common with multithreaded programs, like OpenMP 

programs
− Each son has a very small stack which is rapidly ful

 Will result in a segmentation fault

36



Debugging HPC programs - Benoît Leveugle

5.7. Common bugs - Stack Overflow

37

Compiler Fortran

gfortran When needed to use a debugging tool, do not forget -g -fbacktrace to 
get information on bug position in code
Valgrind will catch it
gdb will catch it with backtrace but not a lot informations

ifort When needed to use a debugging tool, do not forget -g -traceback to 
get information on bug position in code
Valgrind will catch it
gdb will catch it with backtrace but not a lot informations

Compiler C

gcc When needed to use a debugging tool, do not forget -g to get 
information on bug position in code
Valgrind will catch it
gdb will catch it with backtrace but not a lot informations

icc When needed to use a debugging tool, do not forget -g -traceback to 
get information on bug position in code
Valgrind will catch it
gdb will catch it with backtrace but not a lot informations



Debugging HPC programs - Benoît Leveugle

5.8. Common bugs - Buffer Overflow

 Buffer Overflow

 Famous for security reasons

 More common in C than in Fortran
 Will generate an error, except with icc

 Can ask gcc to ignore it using : -fno-stack-protector

38



Debugging HPC programs - Benoît Leveugle

5.8. Common bugs - Buffer Overflow

39

Compiler Fortran

gfortran Error is self explaining

ifort Error is self explaining

Compiler C

gcc When needed to use a debugging tool, do not forget -g to get 
information on bug position in code
gdb will catch it with backtrace

icc -g -traceback -check-pointers=rw will catch it at runtime, however 
-check-pointers=rw makes all other debugging options not working, be 
careful



Debugging HPC programs - Benoît Leveugle

Summary

1. History
2. Unix in 10 minutes
3. Tools used

1. Preprocessing
2. Valgrind
3. GDB

4. Why debugging
5. Common bugs and method to catch them :

1. Floating point exceptions (Invalid, Overflow, Zero)
2. Uninitialized values reading
3. Allocation/deallocation issues
4. Array out of bound reading/writing
5. IO issues
6. Memory leak
7. Stack overflow
8. Buffer overflow

6. Conclusion and useful links

40



Debugging HPC programs - Benoît Leveugle

6. Conclusion and useful links

Veteran advices :

 NaN is not equal to itself generally (depends on platform 
and compiler)

 Programs may not give the same results depending of 
the optimizations options. Using multi threading/MPI also 
provides different results for each run.

 Some optimization options may alter precision
 Remember that terminal ouput may not refresh instantly: 

using "hello 1", "hello 2", etc may result in wrong 
location, use flush (may slow down the program)

41

gcc/icc fflush(stdout); 

gfortran call flush()

ifort call flush(ierror) (segfault if no 
ierror)



Debugging HPC programs - Benoît Leveugle

6. Conclusion and useful links

Veteran advices :

 If your bug is impossible to locate (mathematical or 
algorithm error), ask someone else to check, most of the 
time bug is right in front of you but your knowledge of 
the code prevent you from seeing it

 Never debug more than half a day, this could be 
worst (introduce more bugs to resolve one), and 
your brain needs to "think" away from a screen

 Automatic testing can prevent debuging

42



Debugging HPC programs - Benoît Leveugle 43

Thank you for your attention


	Slide 1
	Introduction
	Summary
	Summary
	1. History
	1. History
	Summary
	2. Unix in 10 minutes
	Summary
	3. Tools used
	3.1. Preprocessing
	3.1. Preprocessing
	3.1. Preprocessing
	3.2. Valgrind
	3.2. Valgrind
	3.3. GDB
	3.3. GDB
	Summary
	4. Why debugging
	4. Why debugging
	Summary
	5. Common bugs and method to catch them
	5.1. Common bugs - Floating point exceptions
	5.1. Common bugs - Floating point exceptions
	5.2. Common bugs - Uninitialized values
	5.2. Common bugs - Uninitialized values
	5.2. Common bugs - Uninitialized values
	5.3. Common bugs - Allocation
	5.3. Common bugs - Allocation
	5.3. Common bugs - Allocation
	5.4. Common bugs - Array out of bounds
	5.4. Common bugs - Array out of bounds
	5.5. Common bugs - IO
	5.6. Common bugs - Memory leak
	5.6. Common bugs - Memory leak
	5.7. Common bugs - Stack Overflow
	5.7. Common bugs - Stack Overflow
	5.8. Common bugs - Buffer Overflow
	5.8. Common bugs - Buffer Overflow
	Summary
	6. Conclusion and useful links
	6. Conclusion and useful links
	Slide 43

