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How to compare two versions of a code ?

The most simplest way is to compare the restitution time (alias the
execution time) of the two versions

The faster one (shorter time) is the best

This is simple but we have to remember it when we try to improve the
performance of a code
Be careful to always compare the same time

In scientific codes it is very common to have a pre-processing part and a
solver part
Be sure to measure only the part in witch you are interested
Otherwise, there is a chance that you will not see the effect of your
modification
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Measuring the performance of a parallel code

Time is a basic tool for comparing two versions of a code
Consider that we have a time t1 for the sequential version of code
If we put 2 cores we can hope to divide the time by 2 (t2 = t1

2 )
If we put 3 cores we can hope to divide the time by 3 (t3 = t1

3 )

The table below shows the execution time of a code named Code 1
The real time refers to the measured restitution time of Code 1
The optimal time refers to the best theoretical time (optiTime = seqTime

nbCores )

nb. of cores real time opti. time

1 98 ms 98.0 ms
2 50 ms 49.0 ms
3 35 ms 32.7 ms
4 27 ms 24.5 ms
5 22 ms 19.6 ms
6 18 ms 16.3 ms

Time in function of the number of cores for Code 1
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Time graph

The previous table is difficult to read for an analysis

It is easier to observe results with a graph
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This graph is not so bad but it is hard to see how far we are from the
optimal time...
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Introducing speed up

An other way to compare performance is to compute the speed up
The standard is to use the sequential time as the reference time
The optimal speed up is always equal to the number of cores we use

sp =
seqTime

parallelTime
,

with seqTime the time measured from the 1 core version of the code and
parallelTime the time measured from the parallel version of the code.

nb. of cores real time speed up

1 98 ms 1.00
2 50 ms 1.96
3 35 ms 2.80
4 27 ms 3.63
5 22 ms 4.45
6 18 ms 5.44

Time and speed up in function of the number of cores for Code 1
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Speed up graph
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Now, with the speed up, it is much easier to see how far we are from
the optimal speed up!
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Amdahl’s law

Can we indefinitely put more cores and get better performances?
Amdahl said no!
Or, to be more precise, it depends on the characteristics of the code...
If the code is fully parallel we can indefinitely put more cores and get
better performances
If not, there is a limitation on the maximal speed up we can reach

spmax =
1

1− ftp
,

with spmax the maximal speed up reachable and ftp the parallel fraction of
time in the code (0 ≤ ftp ≤ 1).
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Amdahl law: example

If we have a code composed of two parts:
20% is intrinsically sequential
80% is parallel

What is the maximal reachable speed up?

spmax =
1

1− ftp
= ...
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Amdahl law: example

If we have a code composed of two parts:
20% is intrinsically sequential
80% is parallel

What is the maximal reachable speed up?

spmax =
1

1− ftp
=

1
1− 0.8

=
1

0.2
= 5.

We have to try hard to limit the sequential part of the code

It is essential to reach a good speed up

In many cases, the sequential part remains in the pre-processing part
of the code but also in IOs and communications...
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Efficiency of a code

The efficiency is the relation between the real version of a code and
the optimal version
There are many ways to define the efficiency of a code

With the speed up: eff = realSp
optiSp

With the restitution time: eff = optiTime
realTime

Etc.
The efficiency can be expressed as a percentage: 0% < eff ≤ 100%

nb. of cores real time speed up efficiency

1 98 ms 1.00 100%
2 50 ms 1.96 98%
3 35 ms 2.80 93%
4 27 ms 3.63 91%
5 22 ms 4.45 89%
6 18 ms 5.44 91%

Time, speed up and efficiency in function of the number of cores for Code 1
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Efficiency graph

70%

75%

80%

85%

90%

95%

100%

 1  2  3  4  5  6

E
ff
ic

ie
n
c
y

Number of cores

Efficiency depending on the number of cores

Optimal

Code 1

How far we are from the optimal code becomes very clear with the
efficiency!
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Scalability

The scalability of a code is its capacity to be efficient when we
increase the number of cores

A code is scalable when it can use a lot of cores

But, how do we measure the scalability of a code ? How do we know
when a code is no more scalable ?

In fact, there is no easy answer
However, there are two well-known models for qualifying the scalability
of a code

Strong scalability
Weak scalability
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Strong scalability

In this model we measure the code execution time each time we add a
core

And we keep the same problem size each time: the problem size is a
constant

nb. of cores problem size real time speed up

1 100 98 ms 1.00
2 100 50 ms 1.96
3 100 35 ms 2.80
4 100 27 ms 3.63
5 100 22 ms 4.45
6 100 18 ms 5.44

Problem size, time and speed up in function of the number of cores for Code 1
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Strong scalability graph

This is the same graph presented before for the speed up: it
represents an analysis of the strong scalability of Code 1
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We can see that the strong scalability of Code 1 is pretty good for 6
cores: we reach a 5.4 speed up, this is not so far from the optimal
speed up!
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Strong scalability of Code 2

Now we introduce Code 2

Measurements of this code are presented below

nb. of cores problem size real time speed up

1 100 98 ms 1.00
2 100 50 ms 1.96
3 100 35 ms 2.80
4 100 32 ms 3.06
5 100 30 ms 3.27
6 100 33 ms 2.97

Problem size, time and speed up in function of the number of cores for Code 2
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Strong scalability of Code 2 (graph)
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We can see that Code 2 has a bad strong scalability

But this is not a sufficient reason to put it in the trash!

What about its weak scalability?
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Weak scalability

In this model we measure the execution time depending on the
number of cores
And we change the problem size in proportion to the number of cores!
We cannot compute the speed up because we do not compare same
problem sizes

But we can compute an efficiency: eff = optiTime
parallelTime = seqTime

parallelTime

nb. of cores problem size real time efficiency

1 100 98 ms 100%
2 200 100 ms 98%
3 300 101 ms 97%
4 400 105 ms 93%
5 500 109 ms 90%
6 600 111 ms 88%

Problem size, time and speed up in function of the number of cores for Code 2
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Weak scalability graph
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The weak scalability of Code 2 is pretty good (≈ 90% of efficiency
with 6 cores)
So, why the strong scalability was so bad ?

Perhaps because the problem size was to small...
Remember Amdahl’s law, perhaps the parallel fraction of time was not
big enough with a problem size of 100
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Strong scalability of Code 2

Let’s redo the strong scalability test for Code 2

But with a bigger problem size (600)!

nb. of cores problem size real time speed up

1 600 611 ms 1.00
2 600 308 ms 1.98
3 600 210 ms 2.91
4 600 162 ms 3.77
5 600 133 ms 4.59
6 600 111 ms 5.50

Problem size, time and speed up in function of the number of cores for Code 2
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Strong scalability of Code 2 (graph)
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With a bigger problem size the strong scalability is much better!
Strong scalability results are much more dependent on the problem
size than for weak scalability
But it is not always possible to perform a complete weak scalability test
This is why the two models are complementary to estimate the
scalability of a code
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Floating-point operations

In the previous section, we saw how to compare different versions of a
code (tools for a comparative analysis)

But we did not speak about concepts to analyse the performance of
the code itself
The number of floating-point operations is an important characteristic
of an algorithm

Well-spread in the High Performance Computing world

1 float sum(float *values, int n)
2 {
3 float sum = 0.f;
4
5 // total flops = n * 1
6 for(int i = 0; i < n; i++)
7 sum = sum + values[i]; // 1 flop because of 1 addition
8
9 return sum;
10 }

Counting flops in a basic sum kernel
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Floating-point operations per second

Number of floating-point operations alone is not very interesting
But with this information we can compute the number of floating-point
operations per second (flop/s)!

Flop/s is very useful because we can directly compare this value with the
peak performance of a CPU
With flop/s we can know if we are making a good use of the CPU
Today CPUs are very fast and we will use Gflop/s as a standard (1
Gflop/s = 109 flop/s)
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Peak performance of a processor

The peak performance is the maximal computational capacity of a
processor

This value can be calculated from the maximum number of
floating-point operations per clock cycle, the frequency and the
number of cores:

peakPerf = nOps× freq× nCores,

with nOps the number of floating-point operations that can be achieved per
clock cycle, freq the processor’s frequency and nCores the number of cores
in the processor.
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Peak performance of a processor: example

CPU name Core i7-2630QM
Architecture Sandy Bridge

Vect. inst. AVX-256 bit (4 double, 8 simple)
Frequency 2 GHz
Nb. cores 4

Specifications from http://ark.intel.com/products/52219

The peak performance in simple precision:

peakPerfsp = nOps× freq× nCores = (2× 8)× 2× 4 = 128 Gflop/s

The peak performance in double precision:

peakPerfdp = nOps× freq× nCores = (2× 4)× 2× 4 = 64 Gflop/s

nOps = 2× vectorSize because with the Sandy Bridge architecture
we can compute 2 vector instructions in one a cycle (add and mul)
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Arithmetic intensity

Previously we have seen how to compute the Gflop/s of our code and
how to compute the peak performance of a processor
Sometime the measured Gflop/s are far away from the peak
performance

It could be because we did not optimize well our code
Or simply because it is not possible to reach the peak performance
In many cases both previous statements are true!

So, with the arithmetic intensity we consider more than just
computational things: we add the memory accesses/operations

AI =
flops

memops
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Arithmetic intensity: example

1 float sum(float *values, int n)
2 {
3 float sum = 0.f; // we did not count sum as a memop
4 // because it is probably a register
5
6 // total flops = n * 1 || total memops = n * 1
7 for(int i = 0; i < n; i++)
8 sum = sum + values[i]; // 1 flop because of 1 addition
9 // 1 memop because of 1 access
10 // in an wide array (values)
11
12 return sum;
13 }

Counting flops and memops in a basic sum kernel

The arithmetic intensity of sum function is: AIsum = n×1
n×1 = 1

The higher the arith. intensity is, the more the code is limited by the
CPU

The lower the arith. intensity is, the more the code is limited by the
RAM
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Operational intensity

Compare to the arithmetic intensity, the operational intensity is slightly
different because it also depends on the size of data

OI =
flops

memops× sizeOfData
=

AI
sizeOfData

sizeOfData depends on the type of data we use in our code, int and
float are 4 bytes, double is 8 bytes.

In the previous code (sum) we worked with float so the operational
intensity is: OIsum = n×1

(n×1)×4 = 1
4

Like the arithmetic intensity:
The higher the ope. intensity is, the more the code is limited by the CPU
The lower the ope. intensity is, the more the code is limited by the RAM
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Operational intensity

1 // AI = 1 || OI = 1/4
2 float sum1(float *values, int n)
3 {
4 float sum = 0.f;
5 for(int i = 0; i < n; i++)
6 sum = sum + values[i];
7 return sum;
8 }

A basic sum1 kernel in simple precision

1 // AI = 1 || OI = 1/8
2 // this code is more limited by RAM than sum1 code
3 double sum2(double *values, int n)
4 {
5 double sum = 0.0;
6 for(int i = 0; i < n; i++)
7 sum = sum + values[i];
8 return sum;
9 }

A basic sum2 kernel in double precision

Tools for performance analysis 31 / 44



Basic concepts for a comparative analysis Kernel performance analysis Optimization strategy

The Roofline model

The Roofline is a model witch has be made in order to limit the
maximal reachable performance
This model takes into consideration two things

Memory bandwidth
Peak performance of the processors

Depending on the operational intensity, the code is limited by memory
bandwidth or by peak performance

Be careful, this model is relevant when the size of data is bigger than
the CPU cache sizes!

Attainable Gflop/s = min

{
Peak floating point performance,
Peak memory bandwidth×OI.
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Memory bandwidth measure

We know how to calculate the CPU peak performance and the
operational intensity of a code but have not spoken about the memory
bandwidth

The memory bandwidth is the number of bytes (8 bits) that memory
can bring to the processor in one second (B/s or GB/s)
How to know what is memory bandwidth?

We could theoretically calculate this value
But we prefer to measure the bandwidth with a micro benchmark:
STREAM

STREAM is a little code specially made in order to compute the
memory bandwidth of a computer

It gives good and precise results
This is better than the theoretical memory bandwidth because there is
always a difference between the theory and the reality...
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The Roofline model: example

Here is an example (same as before) of a the specifications of a processor
with the measured memory bandwidth:

CPU name Core i7-2630QM
Architecture Sandy Bridge

Vect. inst. AVX-256 bit (4 double, 8 simple)
Frequency 2 GHz
Nb. cores 4

Peak perf sp 128 GFlop/s
Peak perf dp 64 GFlop/s

Mem. bandwidth 17.6 GB/s

Specifications from http://ark.intel.com/products/52219
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The Roofline model: example

We only keep the needed specifications for the Roofline model:

CPU name Core i7-2630QM
Peak perf sp 128 GFlop/s
Peak perf dp 64 GFlop/s

Mem. bandwidth 17.6 GB/s

We will take the previous sum1 and sum2 codes as an example for the
Roofline model.
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The Roofline model: example

1 // AI = 1 || OI = 1/4
2 float sum1(float *values, int n)
3 {
4 float sum = 0.f;
5 for(int i = 0; i < n; i++)
6 sum = sum + values[i];
7 return sum;
8 }

A basic sum1 kernel in simple precision

1 // AI = 1 || OI = 1/8
2 // this code is more limited by RAM than sum1 code
3 double sum2(double *values, int n)
4 {
5 double sum = 0.0;
6 for(int i = 0; i < n; i++)
7 sum = sum + values[i];
8 return sum;
9 }

A basic sum2 kernel in double precision
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The Roofline model: example

Peak perf sp 128 GFlop/s
Peak perf dp 64 GFlop/s

Mem. bandwidth 17.6 GB/s

We will take the previous sum1 and sum2 codes as an example for the
Roofline model:

The sum1 operational intensity is 1
4

The sum2 operational intensity is 1
8

Let’s see what is the attainable performance with the Roofline model:

Attainable Gflop/s = min

{
Peak floating point performance,
Peak memory bandwidth×OI.

⇒

Attainable Gflop/ssum1 = min

{
128 Gflop/s,
17.6× 1

4 Gflop/s.
= 4.4 Gflop/s
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The Roofline model: example

Peak perf sp 128 GFlop/s
Peak perf dp 64 GFlop/s

Mem. bandwidth 17.6 GB/s

We will take the previous sum1 and sum2 codes as an example for the
Roofline model:

The sum1 operational intensity is 1
4

The sum2 operational intensity is 1
8

Let’s see what is the attainable performance with the Roofline model:

Attainable Gflop/s = min

{
Peak floating point performance,
Peak memory bandwidth×OI.

⇒

Attainable Gflop/ssum2 = min

{
64 Gflop/s,
17.6× 1

8 Gflop/s.
= 2.2 Gflop/s
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The Roofline model: example on a graph

The graph below represents the Roofline for the previous processor
There are two different Rooflines

One for the simple precision floating-point computations
One for the double precision floating-point computations
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Here, it is clear that the sum1 and sum2 codes are limited by the
memory bandwidth
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The optimization process

Optimize a code is an iterative process
Firstly we have to measure or to profile the code
And secondly we can try optimizations (taking the profiling into
consideration)

Mesure 
or profile 
the code

Apply an 
optimization 
on the code

Iterative optimization process
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Determine the code bottleneck

In the profiling part we have to determine the code bottlenecks
Memory bound
Compute bound

We can use the previous the Roofline model to do that
This is a very good way to understand the code limitations and the code
itself!

But sometimes the code is too big and we cannot apply the Roofline
model everywhere (too much time consuming)

We can use a profiler in order to detect hotspots in the code
When we know hotspot zones we can apply the Roofline model on them!
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Some profilers

There are a lot of profilers
gprof
Tau
Vtune
Vampir
Scalasca
Valgrind
Paraver
PAPI
Etc.

The most important feature of a profiler is to easily see which part of
the code is time consuming

It is that part of the code we will try to optimize

Of course we can do much more than that with a profiler but this is not
in the range of this lesson
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gprof example

1 Flat profile:
2
3 Each sample counts as 0.01 seconds.
4 % cumulative self
5 time seconds seconds calls name remarks
6 14.94 1.01 1.01 __intel_new_memcpy very typical syndrome in C++ codes
7 6.81 1.47 0.46 13216 pass2_ most time consuming code routine
8 5.84 1.87 0.40 189251072 Complexe::Complexe(...) related to __intel_new_memcpy
9 5.77 2.26 0.39 64927232 Complexe::operator=(...) related to __intel_new_memcpy
10 5.62 2.64 0.38 189251072 _ZN8ComplexeC9Edd probably an external call
11 3.70 2.89 0.25 92160 factblu_ second most time consuming routine
12 3.55 3.13 0.24 124392960 Zvecteur::operator()(...)
13 3.55 3.37 0.24 142265344 operator*(...)
14 3.11 3.58 0.21 __intel_new_memset
15 2.96 3.78 0.20 23040 Zvitesse::CoeffCheb(...)
16 2.81 3.97 0.19 58766848 Spectral3D::operator()(...)
17 2.66 4.15 0.18 4224 fft2dlib_
18 2.37 4.31 0.16 184320 resblu_
19 2.37 4.47 0.16 60 Vecteur3D::operator*=(...)
20 2.22 4.62 0.15 operator<<(...)
21 ...

gprof flat profiling of a code
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