

CHEMISTRY: MOLECULES TO MATERIALS

Toward an Accurate Theoretical Description of Gold-based Nanocatalysts Under Reactive Media

M. Dhifallah¹, I-C Oguz¹, J. Meng², B. Zhu², <u>H. Guesmi¹</u>

¹ Institut Charles Gerhardt Montpellier, CNRS/ENSCM/UM, 240, Avenue du Professeur Emile Jeanbrau, 34090 Montpellier, France. ² Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.

The context: Theoretical description of nanocatalysts

Seh, Z. W. et al. Science 355, eaad4998 (2017).

Subject: Gold based nanocatalysts under reactive media

Problematic: Gold shows remarkable catalytic activity for CO oxidation even at room temperature. Despite extensive studies, <u>the mechanism of catalysis</u> by gold nanoparticles <u>is still unclear</u>, in particular in relation to CO oxidation at room temperature.

Chandler B.D. et al. Science, 2014, 345, p. 1599.

Goal: Structure and morphology changes under working conditions

Identification of the shape evolution of GNP under O₂ gas: MSR model

TiO

Modeling supported Au-Cu Nanoparticles

Context: Optimization of Au-Cu catalysts

Goal: to model "realistic" systems: supported catalysts

Main questions:

 ✓ The effect of the support (small nb of atoms/Nbands ; large nb ok Kpoints)
 ✓ The effect of the gas (Large nb of atoms/Nbands ; small nb of Kpoints)
 ✓ The minimum energy structures of AuCu nanoalloys : Hybrid functionals (non easy convergence)

Modeling Au-Cu : The effect of the support

From the bulk to the surface

The Hubbard correction is used for the description of strongly correlated materials:

KPOINTS E(eV) a(Å) NKPTS In titanium oxide, the 3d orbitals do not overlap with the oxy 29x29x11 720 -107,947 3,788 on the titanium atoms. Thus an probative semi-empirical ar Hubbard model leads to an effective Hamiltonian to treat th 33x33x13 1071 -107.9523,789 rials. In the Hubbard model, the electron-electron repuls 39x39x15 1680 -107,951 3,789 parameter U. The DFT+U total energy is given as the

correction term that depends on the orbital occupation r $E^{DFT+U}[\rho, n_s] = E^{DFT}[\rho] + E$ 43x43x17

F

In the *U* total electronic energy, the contributions of c

tionals are counted. This is the reason why one has to ir as follows:

$${}^{U}[n_s] = \mathrm{E}^{U}_0[n_s] - \mathrm{E}^{dc}[n_s]$$

2277

(2.7)

-107,952

3,789

where $E_0^U[n_s]$ is a term derived accordingly to the HF treatment of electron-electron interaction of electrons within the shell s and $E^{dc}[n_s]$ is a double counting term which represents the electron-electron interaction contribution of the shell s that is already present Surface energy calculations following the Fiorentini and Methfessel method: f(x)=ax+b b= (Eslab-Ebulk)/2xA

2x1 surface slab = KPOINT (33x13x1)

Band gap

(eV)

2,1985

2,1985

2,1985

2,1985

d((Å)

1,987

1,988

1,988

1,988

c(Å)

9,487

9,489

9,489

9,489

Methodology

Optimisation of TiO ₂ (100) surface	executed on Linux Intel date 2017.08.24 14:54:14
Correction de Hubbard	running on 168 total cores distrk: each k-point on 28 cores, 6 groups
119 irreducible k-points Nodes=6 :NPAR=4/KPAR=6	distr: one band on NCORES_PER_BAND= 7 cores, 4 groups
4 layers: 48 (16 Ti + 32 O) atoms : NBANE 5 layers: 60 (20 Ti + 40 O) atoms : NBANE 6 layers: 72 (24 Ti + 48 O) atoms : NBANE 7 layers: 84 (28 Ti + 56 O) atoms : NBANE 8 layers: 96 (32 Ti + 64 O) atoms : NBANE	DS= 232 Votre job (3433111) a déclenché un débordement mémoire. Il a tourné sur des nœuds qui disposent de 64 Go de mémoire. La machine Occigen dispose de nœuds avec 128 Go que vous pouvez adresser en rajoutant une option à la soumission de votre job (https://www.cines.fr/calcul/faq-calcul-intensif/#tabs-2). Attention, cette solution est réservée aux travaux justifiant ce besoin mémoire. DS= 472

The problem was solved by concidering Nnodes=KPOINTS

Cost: 27 100 core.h !!!

Modeling Au-Cu : The effect of the reactive gas

The supported Cu nanoparticles disappear under O₂ pressure: Wetting phenomena

Modeling Au-Cu : The effect of the reactive gas

292-320 atoms	Case: La small KF	arge NBANDS/ POINTS
		POSCAR 1.00000000000000 19.105000000000004 0.000000000000 0.0000000000

Dimension of arrays:									
k-points	NKPTS	=	5	k-points in BZ	NKDIM =	= 5	number of band	is <mark>NBAND</mark> S=	1458
number of dos	NEDOS	=	301	number of ions	NIONS =	= 292			
non local maximal	LDIM	=	6	non local SUM 21+1	LMDIM =	= 18			
total plane-waves	NPLWV	- *	*****						
max r-space proj	IRMAX	=	1731	max aug-charges	IRDMAX=	= 5046			
dimension x,y,z NG	X =	96	NGY =	96 NGZ = 144					

Computational cost

Pour nos systèmes comprenant plus de 300 atomes, les tests de calculs (load balancing et communication bandwidth) ont montré un débordement de mémoire pour les calculs avec moins de 480 cœurs. Une fois nous avons déterminé le nombre de nœuds qu'il nous fallait pour des questions de mémoires, nous avons effectué des tests pour l'efficacité (malheureusement pas beaucoup de tests de peur de gaspiller nos heures) et voici un exemple des résultats :

Nanoparticule de Au-Cu couverte de O2 et déposée sur un support TiO2 : 314 atomes, 1494 NBANDS

Sur 20 nœuds de 24 cœurs (480 cœurs) : un LOOP+ coute : 480*3891/3600 soit 518 cores.hours ... LOOP+: cpu time 3897.27: real time 3898.03 Sur 25 noeuds de 24 coeurs (600 coeurs) : un LOOP+ coute : 600*3562/3600 soit 593 cores.hours LOOP+: cpu time 3562.86: real time 3562.20 Sur 35 noeuds de 24 coeurs (840 coeurs): un LOOP+ coute : 840*996s/3600 soit 232 cores.hours LOOP+: cpu time 996.67: real time 1000.01

Un calcule qui converge c'est 147 LOOP+, ce qui fait 34 104 cores.hours

Cela veut dire qu'un calcul sur <u>840 cœurs</u> coute <u>deux fois moins</u> de ressources que le même calcul sur 480 cœurs.

Pour plus de documentation sur le sujet voir le témoignage de Peter Larsson sur ce sujet. <u>https://www.nsc.liu.se/~pla/blog/2014/01/30/vasp9k/</u>

							Nbr Coeurs	Mémoire	secondes	Heures	
	Date de				walltime en	Nbr Coeurs	comptabilisé	reservée en	correpondan	correpondan	Total /jour-
configuration	soumission	Classe	Partition	Code retour	(seconde)	demandés	S	Мо	tes	tes	semaine
CSAu6Cu32_HFstep	01/08/2017 14:00	gros	all	COMPLETED	42 883	840	840	102 400	36 021 720	10 006	
CSAu6Cu32_HFterr	01/08/2017 14:04	gros	all	COMPLETED	42 524	840	840	102 400	35 720 160	9 922	
CSAu6Cu32_SFterr	01/08/2017 14:10	gros	all	COMPLETED	82 400	840	840	102 400	69 216 000	19 227	
RAAu8Cu30_HFstep	01/08/2017 14:14	gros	all	COMPLETED	44 913	840	840	102 400	37 726 920	10 480	
RAAu8Cu30_HFterr	01/08/2017 16:26	gros	all	COMPLETED	33 719	840	840	102 400	28 323 960	7 868	
											57 503
CSAu6Cu32_HFstep	02/08/2017 12:31	gros	all	COMPLETED	9 880	840	840	102 400	8 299 200	2 305	
CSAu6Cu32_HFterr	02/08/2017 12:56	gros	all	COMPLETED	33 669	840	840	102 400	28 281 960	7 856	
CSAu6Cu32_SFterr	02/08/2017 13:01	gros	all	COMPLETED	25 218	840	840	102 400	21 183 120	5 884	
RAAu8Cu30_HFstep	02/08/2017 13:17	gros	all	COMPLETED	30 311	840	840	102 400	25 461 240	7 073	
											23 118
CSAu6Cu32_HFstep	03/08/2017 10:25	gros	all	COMPLETED	35 111	840	840	102 400	29 493 240	8 193	
CSAu6Cu32_HFterr	03/08/2017 10:31	gros	all	COMPLETED	6 888	840	840	102 400	5 785 920	1 607	
CSAu6Cu32_SFterr	03/08/2017 10:35	gros	all	COMPLETED	934	840	840	102 400	784 560	218	
RAAu8Cu30_HFstep	03/08/2017 10:38	gros	all	COMPLETED	4 342	840	840	102 400	3 647 280	1 013	
RAAu8Cu30_HFterr	03/08/2017 12:31	gros	all	COMPLETED	2 622	840	840	102 400	2 202 480	612	
RAAu8Cu30_SFterr	03/08/2017 12:35	gros	all	COMPLETED	995	840	840	102 400	835 800	232	
											11 875
RAAu8Cu30_HFstep	04/08/2017 12:12	gros	all	COMPLETED	801	840	840	102 400	672 840	187	
RAAu8Cu30_HFterr	04/08/2017 12:15	gros	all	COMPLETED	21 972	840	840	102 400	18 456 480	5 127	
RAAu8Cu30_SFterr	04/08/2017 12:25	gros	all	COMPLETED	848	840	840	102 400	712 320	198	
Skin-Heart_AuCu3-Cu_Au8Cu3	04/08/2017 12:37	gros	all	COMPLETED	13 777	840	840	102 400	11 572 680	3 215	
											8 727
											101 223

group lrs2684 du 2018-03-27 au 2018-08-21: nombre de travaux/coeurs - Nombre total de travaux : 379

31*10 000h = 310 000h (en 4mois et demi)

Minimum energy structure of Au-Cu NPs: HSE06 vs. PBE

Calculation of the formation energies for the bulk

HSE06 gives results in very good concordance with experimental results

Stability of different AuCu alloy types:

≻Identification of the shape evolution of GNP under O2 gas: MSR model

State of the art : Structure and morphology changes under working conditions

GNP supported on CeO₂ in various environments at room temperature.

 \Rightarrow During CO oxidation in CO/air gas mixture, the GNP appeared to be faceted in the form of a stable polyhedron enclosed by the major {111} and {100} facets.

 \Rightarrow Unexpectedly, the GNP behaved differently, and became rounded in pure O₂ gas. The GNP exhibited major facets in both inactive N₂ gas at 1 mbar and in vacuum.

 \Rightarrow GNPs supported on crystalline TiC remained polyhedral in all of the gas environments including pure O₂ gas.

a) CO/air 1 mbar COO 2 mm b) Coo 2 mm coo 2

Gold nanoparticles

What could be the link between reactivity and morphology changes ?

State of the art : Structure and morphology changes under working conditions

373 K < T < 273 K : Rounding of the NPs

Identification of the shape evolution of GNP under O₂ gas

Identification of the shape evolution of GNP under O₂ gas

Equilibrium crystal shape: the Wulff construction

$$d^{int}_{hkl} = \mathbf{C} \gamma^{int}_{hkl}$$

$$\gamma_{hkl}^{int} = \gamma_{hkl} + \theta(E_{hkl}^{ads} / A_{hkl}^{at})$$

 γ_{hkl} : surface energy under Vacuum (DFT) E_{hkl}^{ads} : adsorption energy (DFT) A_{hkl}^{at} : surface area per atom (DFT)

 θ is (T, P, E_{hkl}^{ads}) dependent, described by Langmuir isotherm

$$\frac{\theta}{1-\theta} = PK = P\exp\left(-\frac{\Delta G}{k_bT}\right) = P\exp\left(-\frac{E_{hkl}^{ads} - T\left(S_{ads} - S_{gas}\right)}{RT}\right)$$

B. Zhu, et al., Nano Lett. 16, 2628, (2016)

Identification of the shape evolution of GNP under O₂ gas

Including the lateral interaction between adsorbates

 θ is described by the **F-G isotherm**:

$$PK = \frac{\theta}{1-\theta} e^{-c\theta}, \ c = \frac{zw}{RT}$$

$$K = exp\left(-\frac{\Delta G}{k_b T}\right) = \exp\left(-\frac{E_{ads} - T\left(S_{ads} - S_{gas}\right)}{RT}\right)$$

z: coordination number of the surface site

w: lateral interaction (DFT)

$$\gamma_{hkl}^{int} = \gamma_{hkl} + \theta((E_{hkl}^{ads} - zw\theta)/A_{hkl}^{at})$$

C(4x4) slab model C(1x1)

C(1x1) slab model

Results: shape evolution of GNP under O₂ gas

DFT-D3 calculations of Eads O_2 molecule (d_{Au-Au} =4.07 Å): Au (111) = 0.00 eV Au(100) = -0.22 eV Au(110) = -0.34 eV

Results: shape evolution of GNP under O₂ gas

Evolution of active sites as a function of T

Ongoing calculations: MSR model for nanoalloys

Temperature

Ongoing work: Modeling Au-Cu NPs under CO gas

Ongoing: MSR model for nanoalloys

$$\gamma_{alloy}^{int} = \gamma_{alloy} + f(\Delta H_{seg}) + f(\Delta H_{ads})$$

 γ_{alloy}^{int} is **T**, **P**, **E**_{seg}, and **E**_{ads} dependent!

Methodology

SYSTEM =#//bin/sh #SBATCHndases2ISTART = 0#SBATCHndases2ISTART = 0#SBATCHndases2ICHARG = 2#SBATCHndases20PRC = Normal#SBATCHndases20000ISPIN = 2#SBATCHndases20000ISPIN = 2#SBATCHndases20000ISPIN = 2#SBATCHndases20000ENCUT = 400module load purgeENCUT = 400module load intel/18.0 openmpl/intel/2.0.1ISMEAR = 0module load intel/18.0 openmpl/intel/2.0.1ISMEAR = 0srunmpi=pmi2-K1resv-portsISME = 2export OMPI_MCA_coll_tuned_altoall_algorithm=6ISYM = 0srunmpi=pmi2-K1resv-portsPOTIM = 0.2formeralloy/VASP.5.4.4/vasp.5.4.4/bin/vasp_nct*ALGO = FtubeLDAG = TtubeLDAG = Fexecuted on Linux_Intel date 2018.09.10LCHARG = Fexecuted on 56 total coresNPAR = 2distrk* each k-point on 28 cores, 2 groupsdistrk* each k-point on 28 cores, 2 groupsdistrk* each k-point on 28 cores, 2 groups			
ALGO = F LDIAG = T LREAL = Autovasp.5.3.3 18Dez12 (build Mar 13 2017 10:09:23) complexLWAVE = F LCHARG = Fexecuted on running on 56 total coresNPAR = 2 KPAR=2distrk: each k-point on distr: one band on NCORES_PER_BAND= 14 cores, 2 groups	SYSTEM = ISTART = 0 ICHARG = 2 PREC = Normal ISPIN = 2 GGA = PE IVDW = 11 ENCUT = 400 EDIFF = 1E-5 NELM = 200 NELMIN = 8 ISMEAR = 0 SIGMA = 0.1 IBRION = 2 ISIF = 2 EDIFFG = -0.02 NSW = 500 ISYM = 0 POTIM = 0.2	<pre>#!/bin/sh #SBATCHnodes=2 #SBATCHntasks-per-node=28 #SBATCHntasks=56 #SBATCHtime=24:00:00 #SBATCHexclusive #SBATCHexclusive #SBATCHoutput vasp.5.4.4.%J.out #SBATCHconstraint=BDW28 ##SBATCHconstraint=BDW28 ##SBATCHqos=bonus module load purge module load intel/18.0 openmpi/intel/2.0.1 module load intel/18.0 openmpi/intel/2.0.1 module list ulimit -s unlimited export OMPI_MCA_coll_tuned_use_dynamic_rules=1 export OMPI_MCA_coll_tuned_alltoall_algorithm=4 export OMPI_MCA_coll_tuned_bcast_algorithm=6 srunmpi=pmi2 -K1resv-ports /home/alloy/VASP.5.4.4/vasp.5.4.4/bin/vasp_ncl"</pre>	Au(110): 96 atoms Au +2H
LCHARG = Frunning on 56 total coresNPAR = 2distrk: each k-point on 28 cores, 2 groupsKPAR=2distr: one band on NCORES_PER_BAND= 14 cores, 2 groups	ALGO = F LDIAG = T LREAL = Auto LWAVE = F	vasp.5.3.3 18Dez12 (build Mar 13 2017 10:09:23)	complex
	LCHARG = F NPAR = 2 KPAR=2	running on 56 total cores distrk: each k-point on 28 cores, 2 groups distr: one band on NCORES_PER_BAND= 14 cores,	2 groups

Dimension of arrays:								
k-points	NKPTS =	2	k-points in BZ	NKDIM	= 2	number of bands	NBANDS=	682
number of dos	NEDOS =	301	number of ions	NIONS	= 96			
non local maximal	LDIM =	6	non local SUM 21+1	LMDIM	= 18			
total plane-waves	NPLWV =	564480						

Computational cost

Job_description	Number of	Nb cores/job	Nb runs (x24h)	Calculation time in
	atoms			сри
Optimizations of	54 et 108 atoms	168/56	2-3 run per	30 720
surfaces :			surface	
(111), (100), (110),				
(221), (331)				
Adsorption of O_2	64 et 118 atoms	168/56	3-6 run per	46 080
on (111), (100),			system	
(110), (221), (331)				

MSR model for Supported Metal NPs

> Wulff-Kaischew theorem: the distance from the center to the contact surface h_{AB} is proportional to the contact surface energy: γ_{c-s}

$$\frac{\gamma_A}{\gamma_{c-s}} = \frac{h_A}{h_{c-s}} \qquad \begin{array}{l} \gamma_{c-s} = \gamma_{AB} - \gamma_B \\ \gamma_{AB} = \gamma_A + \gamma_B - E_{adh} \end{array}$$

 γ_{AB} : interface energy between A and B.

 E_{adh} : adhesion energy

Wulff-Kaischew in the environment:

$$\gamma_{A(hkl)}^{int} = \gamma_{A(hkl)} + \theta_A \frac{E_{A(hkl)}^{aas}}{A_{A(hkl)}^{at}}$$
substrate
$$\gamma_{c-s}^E = \gamma_{AB} - \gamma_{B(hkl)}^{int} = \gamma_{AB} - \gamma_B - \left(\frac{\theta_B E_B^{ads}}{A_B^{at}}\right) = \gamma_A - E_{adh} - \left(\frac{\theta_B E_B^{ads}}{A_B^{at}}\right)$$

 θ_A , θ_B are described by Langmuir isotherm

DFT calculations of system with 700 atoms !! YES VASP CAN!

Adhesion energy calculations: Size mismatch (13x3) unit cell for Au(111) 696 atomes NBANDS=3920 K=gama 35 nodes/840 cores

30 LOOP+ = 4752 core.h

Acknowledgements

Jun Meng (2018-2019) (Institut Charles Gerhardt, Montpellier)

Dr. **Bien Zhu (2012-2014)** (Institut de physique appliqué de Shanghai, Chine)

Agence Nationale de la Recherche

Dr. Ismail Can OGUZ (2014-2017) (Institut Charles Gerhardt, Montpellier)

Marwa Dhifallah (2015-2018) (Institut Charles Gerhardt, Montpellier)

Merci pour votre attention

CHEMISTRY: MOLECULES TO MATERIALS

