
Optimization techniques
Optimization training at CINES

Adrien CASSAGNE

adrien.cassagne@inria.fr

2017/12/05



Scalar optimizations In-core parallelism Multi-core optimizations

Contents

1 Scalar optimizations

2 In-core parallelism

3 Multi-core optimizations

Optimization techniques 2 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Contents

1 Scalar optimizations
Pre-processing
Avoiding branch instructions
Avoiding divisions
Special functions
Memory accesses
Cache blocking
Inlining
Compiler options

2 In-core parallelism

3 Multi-core optimizations

Optimization techniques 3 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Pre-compute things when it is possible

We can divide a computational code in 3 parts
1 Pre-processing: allocations, initializations, reading of inputs
2 Solver or massively computational part
3 Post-processing: writing of outputs, deallocations

In many cases the solver part is the most time consuming
When it is possible, we have to pre-compute things in the
pre-processing part

The idea is to reduce the total number of operations in the code

Optimization techniques 4 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Pre-processing example

1 void main()
2 {
3 // pre-processing part
4 int n = 1000;
5 float *A, *B, *C, *D;
6 A = new float[n]; // in
7 B = new float[n]; // in
8 C = new float[n]; // in
9 D = new float[n]; // out
10 randomInit(A, n); randomInit(B, n); randomInit(C, n);
11 for(int i = 0; i < n; i++)
12 D[i] = 0;
13
14 // solver or computational part
15 for(int j = 0; j < n; j++)
16 for(int i = 0; i < n; i++)
17 D[i] = D[i] + (A[i] + B[i]) * C[j];
18
19 // post-processing part
20 delete[] A;
21 delete[] B;
22 delete[] C;
23 delete[] D;
24 }

Simple computational code, not optimized

The total number of operations (flops) is n × n × 3

Optimization techniques 5 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Pre-processing example

Slide unavailable

Optimization techniques 6 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Pre-processing example

Slide unavailable

Optimization techniques 7 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Branch instructions

Branch instructions (alias if, switch, etc) create bubbles in the
processor pipeline
The pipeline can’t be fully filled
We have to try to reduce the use of this kind of instructions

1 void main()
2 {
3 // pre-processing part ...
4
5 // solver or computational part
6 // there is an implicit branch instruction in the loop
7 for(int i = 0; i < n; i++) {
8 // compiler generate a branch instruction here
9 if(i >= 1 && i < n -1) {
10 // compiler generate an other branch instruction here
11 switch(i % 4) {
12 case 0: B[i] = A[i] * 0.3333f;
13 case 1: B[i] = A[i] + 1.3333f;
14 case 2: B[i] = A[i] - 0.7555f;
15 case 3: B[i] = A[i] * 1.1111f;
16 default: break;
17 }
18 }
19 }
20
21 // post-processing part..
22 }

Computational code with branch instructions

Optimization techniques 8 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Reducing the number of branch instructions

Slide unavailable

Optimization techniques 9 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Division

Here is the cost of the main operations:
add: 1 CPU cycle
sub: 1 CPU cycle
mul: 1 CPU cycle
div: ≈ 20 CPU cycles

As we can see, a division is very expensive compared to a
multiplication

It is much better to compute the inverse number and multiply by it!

Be careful, when we multiply by inverse we lose some precision in the
calculation

Optimization techniques 10 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Division example

1 void main()
2 {
3 // pre-processing part
4 int n = 1000;
5 float *A, *B;
6 A = new float[n]; // in
7 B = new float[n]; // out
8 randomInit(A, n);
9
10 // solver or computational part
11 for(int i = 0; i < n; i++)
12 B[i] = A[i] / 3.f;
13
14 // post-processing part
15 delete[] A;
16 delete[] B;
17 }

Simple computational code with divisions

Theoretical number of cycles: n × 20

Optimization techniques 11 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Division example

Slide unavailable

Optimization techniques 12 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Special functions

Here is the cost of the main special functions:
pow: very expensive, the number of cycles depends on the input
sqrt: ≈ 30 CPU cycles
rsqrt: 1 CPU cycle
cos: very expensive, the number of cycles depends on the input
sin: very expensive, the number of cycles depends on the input
tan: very expensive, the number of cycles depends on the input

rsqrt take 1 cycle!
This is very surprising
In fact there are hardware pre-compute tables in today CPUs
The CPU simply returns the nearest value we need

pow, sqrt, cos, sin and tan are very expensive try to not use
them in the solver part of the code

If it is not possible, at least try to reduce the number of calls

Optimization techniques 13 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Memory accesses

When the code is memory bound, we have to carefully consider data
structures and data accesses
Memory bandwidth is slow compared to CPU computational capacity

There are some mechanisms to reduce this memory lack: pre-fetching
data
Remember, cache accesses are done per line of words (and not per
words)
So, it is very interesting to work on stream data
Also, we have to reduce direct accesses in RAM and maximize accesses
in cache

Optimization techniques 14 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Memory accesses example

1 void main()
2 {
3 // pre-processing part
4 int n = 4;
5 float *A, *B, *C;
6 A = new float[n*n]; // in
7 B = new float[n*n]; // in
8 C = new float[n*n]; // out
9 randomInit(A, n); randomInit(B, n);

10
11 // solver or computational part
12 for(int i = 0; i < n; i++) // column
13 for(int j = 0; j < n; j++) // row
14 C[i + j*n] = A[i + j*n] + B[i + j*n];
15
16 // post-processing part
17 delete[] A;
18 delete[] B;
19 delete[] C;
20 }

Adding square matrices

i

j

data in RAM

data in cache

access in RAM

Logical and hardware view of matrix in
memory

Optimization techniques 15 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Memory accesses example

1 void main()
2 {
3 // pre-processing part
4 int n = 4;
5 float *A, *B, *C;
6 A = new float[n*n]; // in
7 B = new float[n*n]; // in
8 C = new float[n*n]; // out
9 randomInit(A, n); randomInit(B, n);

10
11 // solver or computational part
12 for(int i = 0; i < n; i++) // column
13 for(int j = 0; j < n; j++) // row
14 C[i + j*n] = A[i + j*n] + B[i + j*n];
15
16 // post-processing part
17 delete[] A;
18 delete[] B;
19 delete[] C;
20 }

Adding square matrices

i

j

data in RAM

data in cache

access in RAM

Logical and hardware view of matrix in
memory

Optimization techniques 16 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Memory accesses example

1 void main()
2 {
3 // pre-processing part
4 int n = 4;
5 float *A, *B, *C;
6 A = new float[n*n]; // in
7 B = new float[n*n]; // in
8 C = new float[n*n]; // out
9 randomInit(A, n); randomInit(B, n);

10
11 // solver or computational part
12 for(int i = 0; i < n; i++) // column
13 for(int j = 0; j < n; j++) // row
14 C[i + j*n] = A[i + j*n] + B[i + j*n];
15
16 // post-processing part
17 delete[] A;
18 delete[] B;
19 delete[] C;
20 }

Adding square matrices

i

j

data in RAM

data in cache

access in RAM

Logical and hardware view of matrix in
memory

Optimization techniques 17 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Memory accesses example

1 void main()
2 {
3 // pre-processing part
4 int n = 4;
5 float *A, *B, *C;
6 A = new float[n*n]; // in
7 B = new float[n*n]; // in
8 C = new float[n*n]; // out
9 randomInit(A, n); randomInit(B, n);

10
11 // solver or computational part
12 for(int i = 0; i < n; i++) // column
13 for(int j = 0; j < n; j++) // row
14 C[i + j*n] = A[i + j*n] + B[i + j*n];
15
16 // post-processing part
17 delete[] A;
18 delete[] B;
19 delete[] C;
20 }

Adding square matrices

i

j

data in RAM

data in cache

access in RAM

Logical and hardware view of matrix in
memory

Optimization techniques 18 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Memory accesses example

1 void main()
2 {
3 // pre-processing part
4 int n = 4;
5 float *A, *B, *C;
6 A = new float[n*n]; // in
7 B = new float[n*n]; // in
8 C = new float[n*n]; // out
9 randomInit(A, n); randomInit(B, n);

10
11 // solver or computational part
12 for(int i = 0; i < n; i++) // column
13 for(int j = 0; j < n; j++) // row
14 C[i + j*n] = A[i + j*n] + B[i + j*n];
15
16 // post-processing part
17 delete[] A;
18 delete[] B;
19 delete[] C;
20 }

Adding square matrices

i

j

data in RAM

data in cache

access in RAM

Logical and hardware view of matrix in
memory

Optimization techniques 19 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Memory accesses example

1 void main()
2 {
3 // pre-processing part
4 int n = 4;
5 float *A, *B, *C;
6 A = new float[n*n]; // in
7 B = new float[n*n]; // in
8 C = new float[n*n]; // out
9 randomInit(A, n); randomInit(B, n);

10
11 // solver or computational part
12 for(int i = 0; i < n; i++) // column
13 for(int j = 0; j < n; j++) // row
14 C[i + j*n] = A[i + j*n] + B[i + j*n];
15
16 // post-processing part
17 delete[] A;
18 delete[] B;
19 delete[] C;
20 }

Adding square matrices

i

j

data in RAM

data in cache

access in RAM

Logical and hardware view of matrix in
memory

Optimization techniques 20 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Memory accesses example

1 void main()
2 {
3 // pre-processing part
4 int n = 4;
5 float *A, *B, *C;
6 A = new float[n*n]; // in
7 B = new float[n*n]; // in
8 C = new float[n*n]; // out
9 randomInit(A, n); randomInit(B, n);

10
11 // solver or computational part
12 for(int i = 0; i < n; i++) // column
13 for(int j = 0; j < n; j++) // row
14 C[i + j*n] = A[i + j*n] + B[i + j*n];
15
16 // post-processing part
17 delete[] A;
18 delete[] B;
19 delete[] C;
20 }

Adding square matrices

i

j

data in RAM

data in cache

access in RAM

Logical and hardware view of matrix in
memory

Optimization techniques 21 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Memory accesses example

i

j

data in RAM

data in cache

access in RAM

Logical and hardware view of matrix in memory

In this implementation data accesses are not contiguous in memory

There is a 4-stride between each access

Optimization techniques 22 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Memory accesses example: solution

Slide unavailable

Optimization techniques 23 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Memory accesses example: solution

Slide unavailable

Optimization techniques 24 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Memory accesses example: solution

Slide unavailable

Optimization techniques 25 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Memory accesses example: solution

Slide unavailable

Optimization techniques 26 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Memory accesses example: solution

Slide unavailable

Optimization techniques 27 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Memory accesses example: solution

Slide unavailable

Optimization techniques 28 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Memory accesses example: solution

Slide unavailable

Optimization techniques 29 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Memory accesses example: solution

Slide unavailable

Optimization techniques 30 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Cache blocking technique

In many cases, some data can be reused!

Let’s take an example with a code working on a 2D grid

1 void main()
2 {
3 // pre-processing part
4 int cols = 10, rows = 6;
5 float *A = new float[cols*rows]; // in
6 float *B = new float[cols*rows]; // out
7 randomInit(A, cols*rows);
8
9 // solver or computational part
10 for(int j = 1; j < rows -1; j++) // row
11 for(int i = 1; i < cols -1; i++) // column
12 B[i + j*cols] = A[(i -1) + (j )*cols] + A[(i +1) + (j )*cols] +
13 A[(i ) + (j )*cols] +
14 A[(i ) + (j -1)*cols] + A[(i ) + (j +1)*cols];
15
16 // post-processing part
17 delete[] A;
18 delete[] B;
19 }

Stencil code

Optimization techniques 31 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Cache blocking technique

1 void main()
2 {
3 // pre-processing part ...
4
5 // solver or computational part
6 for(int j = 1; j < rows -1; j++) // row
7 for(int i = 1; i < cols -1; i++) // column
8 B[i + j*cols] = A[(i -1) + (j )*cols] + A[(i +1) + (j )*cols] + // left, right
9 A[(i ) + (j )*cols] + // center
10 A[(i ) + (j -1)*cols] + A[(i ) + (j +1)*cols]; // top, bottom
11
12 // post-processing part ...
13 }

Stencil code

i

j

data in RAM

boundary data

data in cache

access in cache

access in RAM

Logical 2D grid memory view

Optimization techniques 32 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Cache blocking technique

1 void main()
2 {
3 // pre-processing part ...
4
5 // solver or computational part
6 for(int j = 1; j < rows -1; j++) // row
7 for(int i = 1; i < cols -1; i++) // column
8 B[i + j*cols] = A[(i -1) + (j )*cols] + A[(i +1) + (j )*cols] + // left, right
9 A[(i ) + (j )*cols] + // center
10 A[(i ) + (j -1)*cols] + A[(i ) + (j +1)*cols]; // top, bottom
11
12 // post-processing part ...
13 }

Stencil code

i

j

data in RAM

boundary data

data in cache

access in cache

access in RAM

Logical 2D grid memory view

Optimization techniques 33 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Cache blocking technique

1 void main()
2 {
3 // pre-processing part ...
4
5 // solver or computational part
6 for(int j = 1; j < rows -1; j++) // row
7 for(int i = 1; i < cols -1; i++) // column
8 B[i + j*cols] = A[(i -1) + (j )*cols] + A[(i +1) + (j )*cols] + // left, right
9 A[(i ) + (j )*cols] + // center
10 A[(i ) + (j -1)*cols] + A[(i ) + (j +1)*cols]; // top, bottom
11
12 // post-processing part ...
13 }

Stencil code

i

j

data in RAM

boundary data

data in cache

access in cache

access in RAM

Logical 2D grid memory view

Optimization techniques 34 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Cache blocking technique

1 void main()
2 {
3 // pre-processing part ...
4
5 // solver or computational part
6 for(int j = 1; j < rows -1; j++) // row
7 for(int i = 1; i < cols -1; i++) // column
8 B[i + j*cols] = A[(i -1) + (j )*cols] + A[(i +1) + (j )*cols] + // left, right
9 A[(i ) + (j )*cols] + // center
10 A[(i ) + (j -1)*cols] + A[(i ) + (j +1)*cols]; // top, bottom
11
12 // post-processing part ...
13 }

Stencil code

i

j

data in RAM

boundary data

data in cache

access in cache

access in RAM

Logical 2D grid memory view

Optimization techniques 35 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Cache blocking technique

i

j

data in RAM

boundary data

data in cache

access in cache

access in RAM

Logical 2D grid memory view

Each time we have 3 accesses in the RAM and 2 accesses in the
cache
Can we do better? Can we decrease the number of RAM accesses?

Yes, we can with the cache blocking technique!
The idea is to modify the data accessing manner in order to maximize
data re-utilization

Optimization techniques 36 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Cache blocking technique: example

i

j

data in RAM

boundary data

data in cache

access in cache

access in RAM

Logical 2D grid memory view

With the cache blocking technique we reduce the number of RAM
accesses

It remains just 1 access in RAM (sometimes 2)!
We cut the grid in different blocks (with a vertical separation here)

Optimization techniques 37 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Cache blocking technique: example

i

j

data in RAM

boundary data

data in cache

access in cache

access in RAM

Logical 2D grid memory view

With the cache blocking technique we reduce the number of RAM
accesses

It remains just 1 access in RAM (sometimes 2)!
We cut the grid in different blocks (with a vertical separation here)

Optimization techniques 38 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Cache blocking technique: example

i

j

data in RAM

boundary data

data in cache

access in cache

access in RAM

Logical 2D grid memory view

With the cache blocking technique we reduce the number of RAM
accesses

It remains just 1 access in RAM (sometimes 2)!
We cut the grid in different blocks (with a vertical separation here)

Optimization techniques 39 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Cache blocking technique: example

i

j

data in RAM

boundary data

data in cache

access in cache

access in RAM

Logical 2D grid memory view

With the cache blocking technique we reduce the number of RAM
accesses

It remains just 1 access in RAM (sometimes 2)!
We cut the grid in different blocks (with a vertical separation here)

Optimization techniques 40 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Cache blocking technique: example

i

j

data in RAM

boundary data

data in cache

access in cache

access in RAM

Logical 2D grid memory view

With the cache blocking technique we reduce the number of RAM
accesses

It remains just 1 access in RAM (sometimes 2)!
We cut the grid in different blocks (with a vertical separation here)

Optimization techniques 41 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Cache blocking technique

How to define the size of blocks?
It depends on the problem
In previous stencil code the optimal block size can be computed like this:

blockSize =
sizeOfCache

2 × 3 × nThreads × sizeOfData
,

with sizeOfCache the size of the biggest cache (L3) in bytes, nThreads the
number of threads we are using during the code execution and sizeOfData
the size of data we are computing (simple precision = 4 bytes, double
precision = 8 bytes).

We divide by 2 because the caches are optimal when we use half of
them

We divide by 3 because we have to keep 3 rows in cache with the
stencil problem

Be careful, if blockSize ≥ cols then cache blocking is useless

Optimization techniques 42 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Cache blocking technique: implementation

Slide unavailable

Optimization techniques 43 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Function calls

A function call has a cost (extra assembly code)
Is this is a sufficient reason to do not use functions a code?

It depends but sometimes yes it is!
In fact it depends on how many times we repeat the function call

1 void stencil(const float *A, float *B, const int i, const int j, const int cols)
2 {
3 B[i + j*cols] = A[(i -1) + (j )*cols] + A[(i +1) + (j )*cols] +
4 A[(i ) + (j )*cols] +
5 A[(i ) + (j -1)*cols] + A[(i ) + (j +1)*cols];
6 }
7
8 void main()
9 {
10 // pre-processing part
11 int cols = 10, rows = 6;
12 float *A = new float[cols*rows]; // in
13 float *B = new float[cols*rows]; // out
14 randomInit(A, cols*rows);
15
16 // solver or computational part
17 for(int j = 1; j < rows -1; j++) // row
18 for(int i = 1; i < cols -1; i++) // column
19 stencil(A, B, i, j, cols); // we call the stencil function many times!
20
21 // post-processing part
22 delete[] A;
23 delete[] B;
24 }

Stencil code with function calls
Optimization techniques 44 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

What is inlining?

Inlining a function is the same as replacing the function call by the
code of the function itself

This way there is no more overhead because there are no more function
calls

We can manually do that but this is not a good idea...

Optimization techniques 45 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

How to perform inlining?

In term of software engineering, functions (or methods in
object-oriented programming) are well spread

It is much better to use functions for the code readability
So, can we build a beautiful and efficient code?

This is language or compiler dependent...
In C++ we have the inline keyword to perform inlining
In Fortran 90 (ifort) there is a directive: !DEC$ ATTRIBUTES
FORCEINLINE
Often the compiler is free to perform inlining itself

1 inline void stencil(const float *A, float *B, const int i, const int j, const int cols) { ... }
2
3 void main()
4 {
5 // pre-processing part ...
6
7 // solver or computational part
8 for(int j = 1; j < rows -1; j++) // row
9 for(int i = 1; i < cols -1; i++) // column
10 stencil(A, B, i, j, cols); // we call the stencil function many times
11 // but with the inline keyword the compiler will
12 // automatically replace the call by the inner code
13
14 // post-processing part ...
15 }

Stencil code with function inlined calls in C++
Optimization techniques 46 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Work with the compiler

Today compilers provide a lot of options to auto apply optimizations or
to improve the performance of codes

In this lesson we will talk about the C/C++ GNU compiler (gcc, g++)
but you will find equivalent options with other compilers like the Intel
compiler
It is very important to know and understand what can and cannot be
done by the compiler!

This way we can write beautiful (alias readable) and efficient codes
And the compiler can perform dirty optimizations when it generates the
assembly code!

Optimization techniques 47 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Optimize options with GNU compiler

The most famous option -O[level]:
-O0: reduces compilation time and makes debugging produce the
expected results, this is the default.
-O1: the compiler tries to reduce code size and execution time, without
performing any optimizations that take a great deal of compilation time.
-O2: optimizes even more, GCC performs nearly all supported
optimizations that do not involve a space-speed trade-off.
-O3: optimizes even more, turns on the -finline-functions,
-funswitch-loops, -fpredictive-commoning,
-fgcse-after-reload, -ftree-loop-vectorize,
-ftree-loop-distribute-patterns,
-ftree-slp-vectorize, -fvect-cost-model,
-ftree-partial-pre and -fipa-cp-clone options.
-Ofast: disregard strict standards compliance. It enables optimizations
that are not valid for all standard-compliant programs. It turns on
-ffast-math and the Fortran-specific -fno-protect-parens
and -fstack-arrays.

Optimization techniques 48 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Specific optimize options with GNU compiler

Most of the time we will avoid to use specific options
But it is important to understand what can be performed by some of
them:

-finline-functions: activate automatic inlining, the compiler is
free to perform or not the optimization.
-ftree-vectorize: activate auto-vectorization of the code.
-ffast-math: do not respect IEEE specifications for the calculations
(we lose some precision) but it can severely improve performances.
-funroll-loops: unroll loops whose number of iterations can be
determined at compile time or upon entry to the loop. This option makes
code larger, and may or may not make it run faster.
-march=native: allow specific instructions for a specific architecture,
most of the time we will use this option in order to apply adapted
vectorization on the code.

The documentation of GNU optimize options: https://gcc.gnu.
org/onlinedocs/gcc/Optimize-Options.html

Optimization techniques 49 / 83

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


Scalar optimizations In-core parallelism Multi-core optimizations

Contents

1 Scalar optimizations

2 In-core parallelism
Instruction-level parallelism
Vectorization

3 Multi-core optimizations

Optimization techniques 50 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Break instructions dependences

Today CPUs need some independences between instructions
To fully use pipeline mechanism
And to efficiently exploit instruction-level parallelism (ILP)

1 void kernel(float *A, float *B, float *C, float *D, const float alpha, const int n)
2 {
3 for(int i = 0; i < n; i++) {
4 C[i] = A[i] + B[i]; // no dependences
5 D[i] = C[i] * alpha; // D depends on C
6 A[i] = D[i] - C[i]; // A depends on C and D
7 B[i] = A[i] * 2.0f; // B depends on A
8 }
9 }

Kernel with a lot of dependences

Optimization techniques 51 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Break instructions dependences

Slide unavailable

Optimization techniques 52 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Break instructions dependences

Slide unavailable

Optimization techniques 53 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Code vectorization

Today vector instructions provide an efficient way to improve code
performances
How can we use those instructions?

By enabling the auto-vectorization process: the compiler automatically
detects the zones to vectorize and generates an assembly code with
vector instructions (be sure to have -ftree-vectorize option
activated)
By calling specific functions: intrinsics
By directly writing assembly code: we will try to avoid this solution!

Optimization techniques 54 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Auto-vectorization

Compilers are more and more capable of vectorizing codes
automatically

Loops are the best candidates for auto-vectorization
This process requires respecting some constraints, the main idea is to
write simple kernel codes (simple for the compiler)

The loop sizes have to be countable (for-loops without any break)
In general, branch statements (if, switch) are an obstacle to the
vectorization
We have to guarantee that there is no pointer aliasing with the
__restrict qualifier (this problem does not exist in Fortran)

There is pointer aliasing when two or more pointers can access the same
memory zone

To achieve maximal bandwidth: loads and stores have to be aligned on
the vector size

Optimization techniques 55 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Pointer aliasing and aligned loads/stores

A B

Memory zone

Pointers

A B

Memory zone

Pointers

a) Case with pointer aliasing

b) Case without pointer aliasing

Aliasing problem illustration

a) A can access full B zone
and B can access a sub-part
of A

b) A and B cannot cross

0 1 2 3 4 5 6 7

Memory zone

8 9

LOAD 1 LOAD 2

a) Unaligned loads

0 1 2 3 4 5 6 7

Memory zone

8 9

LOAD 1 LOAD 2

b) Aligned loads

Alignment problem illustration

a) Load 1 and 2 are not
aligned on a multiple of 4

b) Load 1 and 2 are well
aligned on a multiple of 4

Optimization techniques 56 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

How to verify if the code has been well vectorized?

Most simple way is to take a look at the restitution time

But sometimes we cannot assert things with the time alone
GNU compilers provide vectorization reporting with the following
option: -fopt-info

-fopt-info-vec-missed: report the non-vectorized loops and the
reasons
read the documentation for more information: https://gcc.gnu.
org/onlinedocs/gcc/Developer-Options.html

Optimization techniques 57 / 83

https://gcc.gnu.org/onlinedocs/gcc/Developer-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Developer-Options.html


Scalar optimizations In-core parallelism Multi-core optimizations

Intrinsic calls

Sometimes the compiler does not succeed in automatically vectorizing
the code

In this case we have to be more explicit and use intrinsic functions

Basically an intrinsic call is equivalent to an assembly instruction
This type of functions are very very hardware dependent!

This is why we will try not to use them unless we do not have the choice

x86 intrinsics documentation: https://software.intel.com/
sites/landingpage/IntrinsicsGuide/

Optimization techniques 58 / 83

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/


Scalar optimizations In-core parallelism Multi-core optimizations

Intrinsic calls: example

1 // __restrict qualifier specify the compiler
2 // that there is no aliasing
3 void addVectors(const float* __restrict A,
4 const float* __restrict B,
5 float* __restrict C,
6 const int n)
7 {
8 for(int i = 0; i < n; i++)
9 C[i] = A[i] + B[i];

10 }

Simple addVectors implementation

Optimization techniques 59 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Intrinsic calls: example

1 // __restrict qualifier specify the compiler
2 // that there is no aliasing
3 void addVectors(const float* __restrict A,
4 const float* __restrict B,
5 float* __restrict C,
6 const int n)
7 {
8 for(int i = 0; i < n; i++)
9 C[i] = A[i] + B[i];

10 }

Simple addVectors implementation

As you can see the intrinsics
version is much more
complex than the traditional
version

We have to limit intrinsics
utilization for code readability

1 // headers for intrinsic AVX functions
2 #include "immintrin.h"
3
4 void iAddVectors(const float* __restrict A,
5 const float* __restrict B,
6 float* __restrict C,
7 const int n)
8 {
9 // with AVX-256 we can compute vector of

10 // size 8 in single precision
11 for(int i = 0; i < n; i += 8) {
12 // load memory into vector registers
13 __m256 rA = _mm256_load_ps(A +i);
14 __m256 rB = _mm256_load_ps(B +i);
15
16 // perform SIMD/vectorized addition
17 __m256 rC = _mm256_add_ps(rA, rB);
18
19 // store C vector register into memory
20 _mm256_store_ps(C +i, rC);
21 }
22 }

Intrinsics AVX-256 iAddVectors
implementation

Optimization techniques 60 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Wrapping intrinsic calls

Intrinsics summarized:

Very fast and a lot of control on the code

Painful to write, painful to read, reduces the code expressiveness

Non portable

Alternative:

Use a library to wrap the intrinsic calls

Stay very fast

Become portable

Less painful to write or to read

Optimization techniques 61 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

MYINTRINSICS++ (MIPP): add vectors

1 // headers for intrinsic AVX functions
2 #include "immintrin.h"
3
4 void iAddVectors(const float* __restrict A,
5 const float* __restrict B,
6 float* __restrict C,
7 const int n)
8 {
9 // with AVX-256 we can compute vector of

10 // size 8 in single precision
11 for(int i = 0; i < n; i += 8) {
12 // load memory into vector registers
13 __m256 rA = _mm256_load_ps(A +i);
14 __m256 rB = _mm256_load_ps(B +i);
15
16 // perform SIMD/vectorized addition
17 __m256 rC = _mm256_add_ps(rA, rB);
18
19 // store C vector register into memory
20 _mm256_store_ps(C +i, rC);
21 }
22 }

Intrinsics AVX-256 iAddVectors
implementation

1 // MIPP header
2 #include <mipp.h>
3
4 void iAddVectors(const float* __restrict A,
5 const float* __restrict B,
6 float* __restrict C,
7 const int n)
8 {
9 // with MIPP we can compute vector of

10 // size N in single precision
11 for(int i = 0; i < n; i+=mipp::N<float>()) {
12 // load memory into vector registers
13 mipp::Reg<float> rA = &A[i];
14 mipp::Reg<float> rB = &B[i];
15
16 // perform SIMD/vectorized addition
17 mipp::Reg<float> rC = rA + rB;
18
19 // store C vector register into memory
20 rC.store(&C[i]);
21 }
22 }

Portable MIPP iAddVectors
implementation

Optimization techniques 62 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

MYINTRINSICS++ (MIPP)

Why MIPP:

Open-source library/wrapper:
https://github.com/aff3ct/MIPP

Portable:
Supports SSE, AVX, AVX-512 and NEON instruction sets
Works with GNU, Intel, Clang and Microsoft compilers

Provides an thin abstraction interface to the low level intrinsics

Alternatives:

Vector Class Library (VCL):
http://www.agner.org/optimize/vectorclass.pdf

Vc: https://github.com/VcDevel/Vc

simdpp: https://github.com/p12tic/libsimdpp

Optimization techniques 63 / 83

https://github.com/aff3ct/MIPP
http://www.agner.org/optimize/vectorclass.pdf
https://github.com/VcDevel/Vc
https://github.com/p12tic/libsimdpp


Scalar optimizations In-core parallelism Multi-core optimizations

Contents

1 Scalar optimizations

2 In-core parallelism

3 Multi-core optimizations
OpenMP reminders
Avoid false sharing
Reduce threads synchronisations
Search algorithms

Optimization techniques 64 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Multi-core codes

Multi-core architecture is well spread in the High Performance
Computing
There are two main ways to use multi-core architecture

Create multiple processes with MPI as a standard (distributed memory
model)
Or create multiple threads with OpenMP as a standard (shared memory
model)

In this lesson we will not speak about multiple processes model

And we will go deeper into the multi-threaded model

Optimization techniques 65 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

OpenMP

OpenMP is a specific language for creating multi-threaded codes
It is based on directives

Those directives describe how to perform the parallelism
The main advantage of directives is to not modify sequential code (in
theory...)

1 void addVectors(const float* __restrict A,
2 const float* __restrict B,
3 float* __restrict C,
4 const int n)
5 {
6 #pragma omp parallel // creation of a parallel zone directive (threads creation)
7 {
8 #pragma omp for // for-loop indices distribution directive
9 for(int i = 0; i < n; i++)
10 C[i] = A[i] + B[i];
11 }
12 }

Simple addVectors OpenMP implementation

Optimization techniques 66 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

OpenMP: fork-join model

Fork-join model illustration (Wikipedia)

OpenMP follows the fork-join model
Each time we create a parallel zone (#pragma omp parallel) we
create threads (fork operation)
At the end of a parallel zone threads are destroyed and there is an
implicit barrier (join operation)

Of course master thread remains

Optimization techniques 67 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

OpenMP: shared memory model

Shared memory model illustration (computing.llnl.gov)

OpenMP also follows the shared memory model
Each thread can access a global memory zone: the shared memory
But threads own also private data (not completely shared model)

Optimization techniques 68 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

OpenMP: shared memory model example

Shared memory model illustration

1 void addVectors(const float* __restrict A,
2 const float* __restrict B,
3 float* __restrict C,
4 const int n)
5 {
6 #pragma omp parallel
7 {
8 #pragma omp for
9 // i is private because it is declared

10 // after the omp parallel directive
11 for(int i = 0; i < n; i++)
12 // A, B and C are shared!
13 C[i] = A[i] + B[i];
14 }
15 }

Simple addVectors OpenMP
implementation

Optimization techniques 69 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

OpenMP: control data range

OpenMP provides data range control
private: local to the thread,
firstprivate: local to the thread
and initialized
shared: shared by all the threads, in
C/C++ this is the default

Here alpha is a constant, we can put it
in the private memory of each thread
An efficient parallelism comes with
minimal synchronisations

Shared data can generate a lot of
synchronisations
Privacy increases thread independence

1 void dot(const float* __restrict A,
2 float* __restrict B,
3 const float alpha,
4 const int n)
5 {
6 #pragma omp parallel \
7 shared(A, B) \
8 firstprivate(alpha, n)
9 {

10 #pragma omp for
11 for(int i = 0; i < n; i++)
12 B[i] = alpha * A[i];
13 }
14 }

OMP data range example

Optimization techniques 70 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

OpenMP: for-loop indices distribution

For-loop indices distribution can be controlled by the schedule
clause

static: indices distribution is precomputed, and the amount of indices
is the same for each thread
dynamic: indices distribution is done in real time along the loop
execution, work load balancing can be better than with the static
scheduling but dynamic scheduling costs some additional resources in
order to attribute indices in real time

In HPC, static distribution is the best choice if we are sure that
each iteration has the same cost (in time)
There are other types of scheduling but this is not a full OpenMP
lesson

1 // ...
2 #pragma omp for schedule(static, 128) //we statistically attribute 128 per 128 indices to each threads
3 for(int i = 0; i < n; i++)
4 B[i] = alpha * A[i];
5 }
6 // ...

OMP scheduling example

Optimization techniques 71 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

OpenMP: go further

Previous slides were a brief overview of the main OpenMP principles
To have more precise informations you can take a look at the very
good OpenMP reference card:
http://openmp.org/mp-documents/OpenMP-4.0-C.pdf

It could be a very good idea to print it and keep it ;-)

In the next slides we will pay attention to OpenMP codes optimizations

Optimization techniques 72 / 83

http://openmp.org/mp-documents/OpenMP-4.0-C.pdf


Scalar optimizations In-core parallelism Multi-core optimizations

Avoid false sharing

False sharing is a phenomena that occurs when threads write
simultaneously data in a same line

Remember, the cache system works on lines of words: a line is the
smallest element in caches coherence mechanism

If two or more threads are working on the same line they cannot write data
simultaneously!
Stores are serialized and we talk about false sharing

To avoid false sharing, threads have to work on a bigger amount of
data than the cache line size

Concretely we have to avoid (static,1) or (dynamic,1)
scheduling
Cache lines are not very big (≈ 64 Bytes)
Just putting a (static,16) or (dynamic,16) resolves the problem
Be aware that default OpenMP scheduling is (static,1)!

Optimization techniques 73 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Reduce threads synchronisations: barriers

In OpenMP there are a lot of implicit barriers, after each
#pragma omp parallel directive
#pragma omp for directive
#pragma omp single directive

But not after #pragma omp master directive!

If we are sure that there is no need to synchronise threads after the
#pragma omp for directive, we can use the nowait clause
Optimally we need only one #pragma omp parallel directive in
a fully parallel code

OpenMP manages a pool of threads in order to reduce the cost of the
#pragma omp parallel directive but this is not free, each time
OpenMP has to reorganize the pool and wakes up the required threads

Optimization techniques 74 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Reduce threads synchronisations: barriers

1 void kernelV1(const float *A, // size n
2 const float *B, // size n
3 const float *C, // size n
4 float *D, // size 2n
5 const float alpha,
6 const int n)
7 {
8 // threads creation overhead and
9 // private variables creation overhead

10 #pragma omp parallel shared(A, B, D) \
11 firstprivate(alpha, n)
12 {
13 #pragma omp for schedule(static,16)
14 {
15 for(int i = 0; i < n; i++)
16 D[i] = alpha * A[i] + B[i];
17 } // implicit barrier
18 } // implicit barrier
19
20 // threads attribution overhead and
21 // private variables creation overhead
22 #pragma omp parallel shared(A, C, D) \
23 firstprivate(n)
24 {
25 #pragma omp for schedule(static,16)
26 {
27 for(int i = 0; i < n; i++)
28 D[n+i] = A[i] + C[i];
29 } // implicit barrier
30 } // implicit barrier
31 }

A lot of OMP barriers
Optimization techniques 75 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Reduce threads synchronisations: barriers

Slide unavailable

Optimization techniques 76 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Reduce threads synchronisations: critical sections

Sometimes it is not possible to have a fully parallel code and some
regions of the code remain intrinsically sequential

In OpenMP we can specify this kind of region with the #pragma omp
critical directive
But we have to use this directive carefully

It can be a main cause of slow down in OpenMP codes!

Optimization techniques 77 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Reduce threads synchronisations: critical sections

1 float kernelV1(const float *A, // size n
2 float *B, // size n
3 const int n)
4 {
5 float minVal = INF;
6
7 #pragma omp parallel shared(A, B, minVal) \
8 firstprivate(n)
9 {

10 #pragma omp for schedule(static,16)
11 {
12 for(int i = 0; i < n; i++) {
13 B[i] = 0.5f * A[i];
14
15 #pragma omp critical // we are sure that only
16 // one thread can
17 // modify minVal
18 {
19 if(B[i] < minVal)
20 minVal = B[i];
21 }
22 }
23 }
24 }
25
26 return minVal;
27 }

Critical section

Optimization techniques 78 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Reduce threads synchronisations: critical sections

Slide unavailable

Optimization techniques 79 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Search algorithms

In OpenMP 3 there is no optimal solution for search algorithms

This kind of algorithm typically requires while-loops or do-while-loops

However there is a tip to fix this lack in OpenMP 3
Latest version of OpenMP (v4) provides better control of threads

We can terminate threads...
We will not speak about OpenMP 4 because many current systems does
not support this version

Optimization techniques 80 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Search algorithms: OpenMP 3 tip

1 bool searchValV1(const float *A,
2 const int n,
3 float val)
4 {
5 bool found = false;
6
7 #pragma omp parallel shared(A, found) \
8 firstprivate(val)
9 {

10 #pragma omp for schedule(static,16)
11 {
12 for(int i = 0; i < n; i++) {
13 if(A[i] == val)
14 found = true;
15 }
16 }
17 }
18
19 return found;
20 }

Search algorithms

Optimization techniques 81 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Search algorithms: OpenMP 3 tip

Slide unavailable

Optimization techniques 82 / 83



Scalar optimizations In-core parallelism Multi-core optimizations

Final words

Of course there are many more possible optimizations

The purpose of this lesson was to raise awareness among
optimization problematic

Now you have tools to understand and to create your own
optimizations
Presented techniques are very often specific to the problem nature

Be aware that there is no perfect optimization
You will have to think about your needs before trying to optimize your
code

Optimization techniques 83 / 83


	Scalar optimizations
	Pre-processing
	Avoiding branch instructions
	Avoiding divisions
	Special functions
	Memory accesses
	Cache blocking
	Inlining
	Compiler options

	In-core parallelism
	Instruction-level parallelism
	Vectorization

	Multi-core optimizations
	OpenMP reminders
	Avoid false sharing
	Reduce threads synchronisations
	Search algorithms


