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ABSTRACT	
This	paper	presents	the	results	of	our	efforts	to	port	Meso-NH,	
an	 atmospheric	 non-hydrostatic	 research	 model,	 to	 AMD	
MI250X	 GPUs	 using	 OpenACC	 on	 the	 ADASTRA	 Machine,	 a	
technology	 similar	 to	 the	 Frontier	 system	 [1].	 Meso-NH	 is	 a	
versatile	model	 that	 covers	a	wide	 range	of	 resolutions	 from	
synoptic	 to	 turbulent	 scales,	 and	 is	 designed	 for	 studies	 of	
physics	and	chemistry.		

Numerical	 simulation	 of	 the	 atmosphere	 is	 crucial	 for	
understanding	and	predicting	weather	and	climate	extremes.	
Current	 numerical	 weather	 prediction	 codes	 are	 limited	 to	
speciaic	 resolutions	 on	 global	 and	 regional	 scales.	 The	Meso-
NH	 code,	 however,	 tackles	 scales	 and	 complexities	 beyond	
what	is	typically	used	in	operational	forecasting.		

We	 collaborated	 with	 GENCI,	 CINES,	 HPE,	 and	 AMD	 on	 the	
"progress	contract,"	 for	ADASTRA	machine	aiming	to	achieve	
simulations	at	hectometric	resolution	for	recent	storms	in	the	
Atlantic	and	Mediterranean	regions,	characterized	by	extreme	
wind	 gusts.	 This	 higher	 resolution	 allows	 us	 to	 explicitly	
represent	a	cascade	of	scales,	from	the	storm	core	(>100	km)	
to	 the	 deep	 and	 shallow	 convective	 circulations	 behind	 the	
gusts	 (<1	 km).	 The	 successful	 porting	 of	 Meso-NH	 to	 AMD	
MI250X	GPUs	made	this	numerical	achievement	possible.	

The	paper	focuses	on	the	challenges	faced	during	the	porting	
process,	 optimization	 strategies,	 and	 the	 lessons	 learned	
throughout	 the	 project.	 Additionally,	 we	 share	 the	 current	
performance	 results	 from	 relevant	 benchmark	 problems.	 A	
comparative	 study	 highlights	 the	 performance	 and	 energy	
consumption	aspects	of	a	 fraction	of	 the	code	that	dominates	
the	computation	time.	Notably,	we	achieved	a	speed-up	of	3.5	
times	compared	to	computation	on	AMD-	Genoa	processors.		

The	results	of	this	porting	effort	open	up	new	possibilities	for	
atmospheric	 simulations	 at	 hectometric	 resolutions,	

enhancing	 the	 accuracy	 and	 sophistication	 of	 weather	
phenomena	 representation.	 The	 collaboration	 between	
different	 institutions	 has	 paved	 the	 way	 for	 advanced	
meteorological	research,	contributing	to	the	ongoing	progress	
in	the	aield.		
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1	 Introduction	
Meso-NH	 [2]	 is	 a	 French	 mesoscale	 meteorological	 research	
model,	 initially	 developed	 by	 the	 Centre	 National	 de	
Recherches	Météorologiques	 (CNRM	 –	 CNRS/	Météo-France)	
and	the	Laboratoire	d’Aérologie	(LA	–	UPS/CNRS).	
It	operates	as	a	grid-point-limited	area	model	based	on	a	non-
hydrostatic	 system	 of	 equations.	 To	 account	 for	 the	 Earth’s	
sphericity,	 the	 equations	 are	 formulated	 on	 the	 conformal	
plane.	 The	 model	 ensures	 anelastic	 continuity	 by	 solving	 an	
elliptic	 equation	 with	 high	 accuracy	 to	 determine	 pressure	
perturbations.	 In	 its	 early	 stages,	 the	 Richardson	 iterative	
method	was	used,	and	later,	a	more	efficient	method	following	
Skamarock	 et	 al.	 [3]	 was	 developed,	 employing	 a	 conjugate	
residual	 algorithm	 accelerated	 by	 a	 flat	 Laplacian	
preconditioner,	and	has	been	parallelized	both	vertically	and	
horizontally.		
Meso-NH	 is	maintained	 by	 computer	 and	 research	 scientists	
from	 LA	 and	 CNRM.	 The	 code	 is	 written	 in	 Fortran	 90.	
Running	 scripts	 are	 in	 shell	 and	 use	make	 files.	Much	 of	 the	
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Meso-NH	 model	 has	 been	 parallel	 since	 1999	 [4],	 for	
distributed	memory	clusters.	Significant	portions	of	Meso-NH	
have	been	parallelized,	employing	2-D	domain	decomposition,	
where	 the	 physical	 domain	 is	 divided	 into	 horizontal	
subdomains	 in	 the	 x	 and	 y	 directions.	 Communication	
between	multiple	processes	 is	achieved	 through	 the	Message	
Passing	Interface	(MPI).		
In	 recent	 years,	 efforts	 have	 been	made	 to	 port	Meso-NH	 to	
NVIDIA	 GPUs,	 utilizing	 OpenACC	 directives	 for	 GPU-based	
parallelization.	 NVIDIA’s	 robust	 support	 for	 OpenACC	 in	 its	
software	 stack	 made	 this	 transition	 smoother.	 Additionally,	
HPE	 CRAY	 FORTRAN	 compiler	 also	 provided	 OpenACC	 GPU	
offloading	 support,	 enabling	 the	 compilation	 of	 Meso-NH	 on	
the	new	AMD	MI250X	GPU-based	ADASTRA	system.		
This	work	outlines	the	initial	experiences	in	porting	Meso-NH,	
originally	running	on	AMD	GPUs	on	the	ADASTRA	system	with	
the	 HPE/CRAY	 environment	 [5].	 The	 paper	 discusses	 the	
challenges	 encountered	 during	 the	 porting	 and	 optimization	
process,	 transitioning	 from	 HPC	 systems	 based	 on	 NVIDIA	
GPUs	 to	 AMD	 GPU-based	 systems	 on	 ADASTRA.	 The	 focus	
then	 shifts	 to	 presenting	 case	 studies	 using	 Meso-NH	 with	
GPUs,	 showcasing	 the	 achieved	 high	 performance	 on	 AMD	
MI250X	GPU-based	systems,	along	with	 the	energy	efficiency	
results	obtained.	The	paper	concludes	by	summarizing	the	key	
findings.	

2	 The	porting	effort	
Since	 the	code	had	already	been	ported	 to	NVIDIA	GPUs,	our	
strategy	 was	 to	 first	 compile	 the	 application	 on	 the	 GPUs,	
validate	the	existing	OpenACC	directives	in	the	code,	and	then	
proceed	to	the	performance	optimization	phase.	Second,	port	
the	non-accelerated	part	of	the	code	to	the	GPU.	
	
Compiling	the	Meso-NH	OpenACC-based	code	using	the	CRAY	
compiler	for	AMD	GPUs	was	relatively	straightforward.	There	
were	 a	 few	 places	 where	 the	 compiler	 indicated	 that	 the	
existing	 OpenACC	 directives	 were	 missing	 required	 fields,	
even	 though	we	 are	 reasonably	 confident	 that	 the	 OpenACC	
specification	 lists	 them	 as	 optional	 and	 the	NVIDIA	 compiler	
did	not	have	an	issue.	Nevertheless,	the	error	messages	were	
clear	and	the	required	changes	minimal.	
After	successfully	compiling	and	conducting	regression	testing	
on	 the	 AMD	 GPU-based	 systems,	 an	 extensive	 optimization	
effort	 was	 initiated	 to	 compare	 the	 relative	 performance	 on	
AMD	MI250X	GPU-based	nodes	on	the	ADASTRA	system	with	
that	 on	NVIDIA	 V100	 GPU-based	 nodes	 on	 another	 system	 (	
MARCONI-100/CINECA	and		Jean-Zay/IDRIS).	
	
During	 the	porting	phase,	 two	main	challenges	emerged.	The	
first	 challenge	 was	 regarding	 performance	 issues,	 and	 the	
second	pertained	to	ensuring	bit-reproducibility	of	numerical	
results	between	the	GPU	and	CPU	versions.		

Optimizing	 a	Fortran	 scientific	 application	 like	Meso-NH	 in	 a	
manner	 that	 is	 both	 portable	 and	 productive	 proved	 to	 be	
quite	 challenging.	 A	 significant	 aspect	 that	 posed	 difficulties	
was	 Meso-NH’s	 extensive	 use	 of	 array	 syntax.	 This	 specific	
feature	caused	difficulties	when	using	certain	compilers,	such	
as	the	Fortran	CRAY	compiler	with	OpenACC	offloading.	
	
For	 benchmarking	 purposes,	 two	 representative	 cases	 were	
selected:	one	with	a	grid	size	of	256x256	and	the	other	with	a	
grid	 size	 of	 512x512.	 These	 grid	 sizes,	 though	 modest,	 are	
physically	meaningful	 for	simulations.	 In	 this	section,	we	will	
primarily	 focus	 on	 the	 difficulties	 encountered	 during	 the	
porting	 process,	 while	 the	 results	 related	 to	 pure	 compute	
performance	will	be	discussed	in	the	following	section.	
	

2.1	  Challenge	1:	False	recurrence		
During	the	porting	process,	we	encountered	a	notable	bug	 in	
the	Fortran	CRAY	compiler	(versions	including	cce/15.01)	that	
led	 to	 the	 detection	 of	 false	 recurrence	 between	 variables	 in	
OpenACC,	 significantly	 impacting	 parallelization.	 To	 work	
around	this	issue,	we	found	a	solution	by	adding	"present(...)"	
directives	 to	 the	 "!$acc	 kernels"	 directives.	 However,	 this	
approach	 caused	 a	 conflict	 with	 the	 Nvidia	 "nvfortran"	
compiler,	which	detected	an	error	due	to	double	declarations.	
The	 variables	 declared	 in	 the	 "!$acc	 kernels	 present()"	
directive	 were	 already	 declared	 in	 a	 "!$acc	 data	 present(...)"	
directive,	encompassing	all	kernels.	To	address	this	situation,	
we	 introduced	 a	 "present_cr"	 macro	 and	 incorporated	
compiler	 flags	 to	 enable	 the	 bypass	 only	 for	 the	 CRAY	
compiler	 (flags	 -DMNH_COMPILER_CCE).	 Bellow	 an	 extract	
from	 the	 code	 highlighting	 illustrates	 the	 false	 recurrence	
problem.	 Additionally,	 in	 other	 sections	 of	 the	 code,	 we	
encountered	 the	 same	 recurrence	 problem,	 where	 the	
compiler	 seemed	 to	 ignore	 the	 independent	 clause	 in	 the	
"!$acc	 loop"	 directive.	 To	 resolve	 this,	 we	 found	 that	 the	
addition	 of	 the	 "!DIR$CONCURRENT"	 directive	 proved	
effective.	

*	*	*	
ZDMQ(:,:,IKB-1)	=	&	
SIGN(	(MIN(	ABS(ZDMQ(:,:,IKB-1)),	
2.0*(PSRC(:,:,IKB-1)	-	&	
MIN(PSRC(:,:,IKE-1),PSRC(:,:,IKB-	
1),PSRC(:,:,IKB))),	&	
2.0*(MAX(PSRC(:,:,IKE-1),PSRC(:,:,IKB-	
1),PSRC(:,:,IKB))	-	&	
PSRC(:,:,IKB-1))	)),	ZDMQ(:,:,IKB-1)	)	
!$acc	end	kernels	
!$acc	kernels	present_cr(ZDMQ,PSRC)	ZDMQ(:,:,IKE+1)	=	&	
SIGN(	(MIN(	ABS(ZDMQ(:,:,IKE+1)),	
2.0*(PSRC(:,:,IKE+1)	-	&	MIN(PSRC(:,:,IKE),PSRC(:,:,IKE+1),PSRC(:,:,I	
KB+1))),	&	
2.0*(MAX(PSRC(:,:,IKE),PSRC(:,:,IKE+1),PS	
RC(:,:,IKB+1))	-	&	
PSRC(:,:,IKE+1))	)),	ZDMQ(:,:,IKE+1)	)	
!$acc	end	kernels	

*	*	*	
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In	all	 the	other	parts	of	 the	code	where	 the	same	recurrence	
problem	 was	 found,	 the	 compiler	 ignored	 the	 independent	
clause	 in	 the	 “!$acc	 loop”	 directive,	 the	 addition	 of	
the	 !DIR$CONCURRENT	 directive	 solved	 the	 problem,	 as	
shown	below.	

*	*	*	
!$acc	kernels	
DO	JK=IKTB,IKTE	
!DIR$CONCURRENT	
!$acc	loop	independent	collapse(2)	private(	ZCOND,	ZQ1,	ZTEMP	)	

DO	JJ=KJB,KJE	
DO	JI=KIB,KIE	

ZTEMP	=	PT(JI,JJ,JK)	
	 ENDDO		

ENDDO	
ENDDO	

*	*	*	

2.2	 Challenge	2:	extra	copy	
Another	significant	challenge	arose	when	pointers	were	used	
in	the	code,	leading	to	potential	aliasing	between	the	pointers	
and	 the	 array	 syntax.	 The	 loops	 were	 not	 recognized	 as	
parallelizable,	 resulting	 in	 performance	 issues.	 However,	
when	we	used	"allocatable"	 instead	of	pointers,	 the	compiler	
acknowledged	that	there	was	no	aliasing,	leading	to	improved	
performance.	
In	cases	where	array	syntax	was	used	with	pointers,	we	found	
that	 a	 temporary	 array	 was	 created.	 For	 example,	 "A=A+B"	
became	 "T=A+B"	 followed	 by	 "A+T".	 Consequently,	 two	
separate	 kernel	 statements	 were	 executed.	 The	 extra	 copy	
observed	 in	 the	code	was	attributed	 to	 this	 temporary	array.	
Although	we	managed	 to	address	 the	copy,	we	still	 faced	 the	
challenge	of	executing	two	kernels.	To	mitigate	this	issue,	we	
reached	 out	 to	 HPE	 support	 and	 devised	 a	 workaround	
involving	the	addition	of	specific	directives.	We	introduced	the	
necessary	 directives	 in	 certain	 situations,	 such	 as	 adding	
"present(...)"	 directives	 to	 the	"!$acc	kernels"	 directive,	which	
helped	resolve	the	performance	problem	due	to	the	extra	copy.	
As	 part	 of	 our	 efforts	 to	 document	 these	 performance	
problems	 comprehensively,	 we	 created	 a	 reproducer	 that	
consolidates	 various	 scenarios,	 encompassing	 array	 syntax	
and	 loops	 with	 or	 without	 the	 "present"	 clause.	 This	
reproducer	 serves	 as	 a	 valuable	 resource	 in	 understanding	
and	 addressing	 these	 challenges	 efficiently.	 The	 code	 below	
shows	a	reproducer	extract	of	different	types	of	operations.	

*	*	*	
#ifdef	Doconcurrent	
do	concurrent(i=1:NX,j=1:NY,k=1:NZ)	
TZ_U(i,j,k)	=	TZ_U(i,j,k)	+	TX_U(i,j,k)	+	2.0	*	TY_U(i,j,k)	
#elif	defined(Arraysyntax)	
TZ_U(:,:,:)	=	TZ_U(:,:,:)	+	TX_U(:,:,:)	+	2.0	*	TY_U(:,:,:)	
#elif	defined(Do	loop)	
!$acc	loop	independent	collapse(3)	do	i=1,NX;	do	j=1,NY;	do	k=1,NZ	
TZ_U(i,j,k)	=	TZ_U(i,j,k)	+	TX_U(i,j,k)	+	2.0	*	TY_U(i,j,k)	
#elif	defined(Do	loop	with	collapse)	
!$acc	loop	
!dir$	collapse(i,j,k)	(Do	loo	with	collapse)	do	i=1,NX;	do	j=1,NY;	do	k=1,NZ	
TZ_U(i,j,k)	=	TZ_U(i,j,k)	+	TX_U(i,j,k)	+	2.0	*	TY_U(i,j,k)	

*	*	*	

In	 table	 1,	 we	 present	 the	 performance	 results,	 the	 best	
performance	 is	 obtained	 with	 array	 syntax	 by	 adding	 the	
present	clause	in	the	acc	kernel	directive	in	both	cases	either	
with	or	without	pointer.		

GPU	
ADASTRA	

Array	declaration	
Pointer	Fortran	 No	Pointer	

!$acc	
kernels	

!$acc	
kernels	
present	

!$acc	
kernels	

!$acc	
kernels	
present	

Do	concurrent	 0.304	 0.303	 0.297	 0.297	
Array	syntax	 9.18	 0.179	 0.296	 0.200	
Do	loop	

!dir$	collapse	 0.203	 0.204	 0.209	 0.209	

Do	loop	
independent	collapse	 -	 8.779	 8.771	 8.773	

Table	 1:	 Performance	 results	 with	 different	 types	 of	
operations	

2.3	 Challenge	3:	Flush-to-zero		
Ensuring	 bit-reproducibility	 of	 CPU/GPU	 results	 is	 crucial	 in	
scientific	 applications	 like	 Meso-NH.	 To	 tackle	 this	 crucial	
aspect,	 two	 internal	 tools	have	been	developed	within	Meso-
NH.	
The	Bit-Reproducibility	Library:	This	 library	plays	a	key	role	
in	 maintaining	 bit-reproducibility	 by	 recoding	 intrinsic	
functions	 such	 as	 log,	 exp,	 power,	 and	 others.	 The	 functions	
are	initially	recoded	in	C++	+OpenACC	and	later	translated	to	
OpenMP.	 To	 interface	 with	 elemental	 functions,	 a	 Fortran	
interface	 is	 used.	 Leveraging	 this	 library	 enables	 users	 to	
obtain	 bit-reproducible	 results,	 which	 is	 essential	 for	 the	
reliability	and	consistency	of	simulations.	
MPPDB_CHECK:	 Functioning	 as	 a	 debugging	 tool,	
MPPDB_CHECK	launches	two	executables	simultaneously	-	an	
executable	 for	 the	 CPU	 version	 and	 another	 for	 the	 GPU	
version	 using	 the	 same	 data.	 It	 then	 compares	 all	 the	
intermediate	arrays	utilized	during	the	calculations.	This	 tool	
proves	 highly	 beneficial	 when	 dealing	 with	 non-bit-
reproducible	 results,	 as	 it	 helps	 identify	 the	 specific	 arrays	
responsible	 for	 the	 discrepancies,	 thereby	 facilitating	 the	
resolution	of	the	underlying	issues.	
However,	 as	 the	 number	 of	 iterations	 increased,	 we	
discovered	 that	 the	 results	were	no	 longer	bit- reproducible	
after	some	iterations.	This	inconsistency	was	attributed	to	the	
"flush-to-zero"	problem.	
The	 "flush-to-zero"	 setting	 is	 a	 hardware	 feature	 that	 resets	
any	computed	floating-point	result	to	zero	if	the	result	would	
otherwise	 be	 subnormal.	 Generally,	 compilers	 set	 this	 mode	
by	 default	 or	 if	 options	 like	 "-fast"	 are	 utilized.	 In	 "flush-to-
zero"	mode,	 the	 hardware	 assumes	 that	 operands	 are	 either	
normalized	floating-point	values	or	NaN	or	Infinity	values—all	
of	which	are	natively	handled	by	the	hardware.	
Within	 the	 IEEE	 754	 specification,	 the	 term	 "tiny	 non-zero"	
refers	 to	 "subnormal"	 numbers,	 which	 serve	 as	
representations	to	fill	 the	gap	between	zero	and	the	smallest	
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normalized	number.	However,	the	behavior	of	these	numbers	
differs	 slightly,	 and	 using	 them	 can	 lead	 to	 a	 decrease	 in	
performance.	The	threshold	value	corresponds	to	the	smallest	
normalized	number	for	the	specific	data	width	being	used	(e.g.,	
~2.225.10-308	for	float64).	
By	 default,	 CCE	 sets	 "abrupt	 underflow"	 floating-	 point	
handling,	 meaning	 that	 whenever	 arithmetic	 operations	
would	 produce	a	 "tiny	 non-zero"	 result,	 it	 is	 replaced	with	 a	
zero	of	 the	 same	 signs.	 For	 instance,	 the	 expected	 result	 of	 -
1.7236.10-308	 is	 considered	 tiny	 and	 replaced	 by	 -0.	
Conversely,	 another	 example	 value,	 RR3	 =	 -
8.1459090792699401.10-300,	 produces	 a	 non-tiny/normal	
result	and	is	not	flushed	to	zero.	
In	 fact,	values	below	the	min	(2-1022=	~2.225.10-308),	and	 in	
particular	values	called	subnormal	or	"au	tiny	non-zero"	in	the	
IEE	754	spec,	are	flushed	to	zero,	 in	our	case	on	the	CPU	and	
not	on	the	GPU.	
To	solve	this	problem,	it	was	necessary	to	apply	a	filter	to	very	
small	 values,	 setting	 them	 to	 zero,	 the	 code	 below	 shows	 an	
extract	of	code	with	the	filter	applied.	

*	*	*	
ELEMENTAL	FUNCTION	BR_FZ(PVAL)	
!$acc	routine	seq	
REAL,	INTENT(IN)	::	PVAL	REAL	 ::	BR_FZ	
IF	(	ABS(PVAL)	<	2.225*(10.0**(-308))	)	THEN	
BR_FZ=sign(0.0,PVAL)	ELSE	
BR_FZ=PVAL	ENDIF	
END	FUNCTION	BR_FZ	

*	*	*	

3	  Performance	results	
All	 benchmarks	 presented	 in	 the	 following	 were	 run	 on	 the	
AMD	 MI250X	 GPU-based	 ADASTRA	 system	 (that	 hosts	 64	
cores	Trento	CPUs	coupled	to	8	AMD	GPUs).	The	performance	
measurements	for	the	256x256	grid	test	case	are	presented	in	
Table	2.	

Hector	256x256	(MG)	
NNODES(GPU)	

1(8)	

ADASTRA-GPU	
Number	of	MPI	 16	

Time(s)	 106.0	

ADASTRA-CPU	
Number	of	MPI	 64(3cpu	per	task)	

Time(s)	 386.2	
Speed	up	 3.643	

Table	2:	Performance	results	and	speed	up	on	ADASTRA	
GPU/CPU	for	the	test	case	256x256	

These	 measurements	 were	 obtained	 with	 an	 acceleration	
factor	 of	 3.643	 using	 the	 multigrid	 solver	 (MG)	 version	 for	
100-time	steps	(to	ensure	fair	performance	comparison	in	all	
tested	 cases,	 all	 runs	 based	on	Meso-NH	were	 using	Prg-Env	
cray/8,3,3,	cce/15,0,1	compiler	and	their	own	implementation	
of	 MPICH.	 The	 results	 show	 the	 speedup	 achieved	 on	 the	
GPU/CPU	system.	
Table	 3	 summarizes	 the	 various	 performance	measurements	
on	 the	 512x512	 grid	 test	 case.	 The	 multigrid	 solver	 (MG)	

version	performed	well,	with	an	acceleration	factor	of	5.5,	3.5	
and	3.1	for	cases	1,	2	and	4	nodes	respectively.	
	

Hector	512x512	
NNODES(GPU)	

1(8)	 2(16)	 4(32)	
ADASTRA-GPU	

(MG)	
Number	of	MPI	 16	 16	 64	

Time(s)	 252.3	 184.4	 106.0	
ADASTRA-GPU	

(FFT)	
Number	of	MPI	 16	 32	 64	

Time(s)	 300.3	 186.0	 121.0	
ADASTRA-CPU	

(MG)	
Number	of	MPI	 64	 256	 256	

Time(s)	 1377.4	 642.6	 330.2	
ADASTRA-CPU	

(FFT)	
Number	of	MPI	 	 	 	

Time(s)	 861.2	 398.7	 187.1	
Speed	up	(MG)	 5.5	 3.5	 3.1	
Speed	up	(FFT)	 2.9	 2.1	 1.5	

Table	3:	Performance	results	and	speed	up	on	ADASTRA	
GPU/CPU	for	the	test	case	512x512:	comparison	FFT	and	
MultiGrid	solver	

Performance	 on	 the	 512x512	 grid	 test	 case	 (Meso-NH-MG)	
shows	that	execution	on	1	GPU	node	is	faster	than	on	4	AMD	
GENOA	CPU	nodes	 (192	 cores	@	2.4	GHz	per	node),	with	 an	
execution	time	of	252.3	on	1	GPU	node	versus	330.3	seconds	
on	 4	 CPU	 nodes.	 We	 find	 a	 very	 good	 scalability	 of	 the	 FFT	
solver	 version	 on	 the	 ADASTRA-CPU	 partition,	 with	 an	
execution	 time	of	861.2	seconds	 for	1	node	and	187	seconds	
for	4	nodes.	The	absence	of	any	constraint	on	the	number	of	
MPI	ranks	for	the	FFT	solver,	we	were	able	to	utilize	fully	the	
resources	 available	 to	 the	 GENOA	 node	 resources	 and	
cache	bandwidth.	

4	  Energy	consumption	

4.1	  Impact	of	the	CPU	turbo	mode	usage	
In	 the	 energy	 studies,	 the	 team	 investigated	 the	 impact	 of	
activating	the	turbo	mode	on	the	CPUs	of	the	Trento	nodes	in	
the	 ADASTRA	 GPU	 partition.	 The	 tests	 were	 conducted	 by	
running	 benchmarks	 with	 and	 without	 the	 turbo	 mode	
activated	 (via	 SLURM	prolog).	Figure	1	 illustrates	 the	 impact	
of	CPU	turbo	mode	usage.	
The	 findings	 revealed	 that	 energy	 consumption	 on	 a	 AMD	
9654	 96-cores	 GENOA	 bi-socket	 node	 is	 three	 times	 greater	
than	on	a	AMD	MI250X	GPU	node.	Moreover,	the	performance	
measurements	for	the	256x256	grid	test	case,	as	presented	in	
Table	2,	demonstrated	a	 significant	 impact	of	 turbo	mode	on	
CPU	 time	 to	 solution	 for	 the	 Meso-NH	 application.	 In	 this	
specific	 test	 case,	 using	 turbo	 mode	 on	 the	 GPU	 resulted	 in	
lower	energy	consumption.	
Figure	 1	 shows	 that	 energy	 consumption	 on	 AMD	 GENOA	
node	is	3	times	greater	than	on	a	AMD	MI250X	GPU	node,	and	
the	performance	measurements	presented	in	Figure	1.	for	the	
test	case	of	the	256x256	grid	on	a	single	node.	The	impact	of	
turbo	 on	 CPU	 for	 time	 to	 solution	 is	 significant	 for	Meso-NH	
application.	 This	 test	 case	 consumes	 less	 energy	 using	 turbo	
mode	on	GPU.	
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Figure	1:	 Impact	of	the	CPU	turbo	mode	usage	on	energy	
consumption.	

4.2	  Frequency	capping	studies	
Frequency	capping	studies	were	performed	using	the	Energy	
Reporting	Tool	in	Slurm	(ERIS).	This	tool	allowed	the	team	to	
control	the	CPU	frequency,	ensuring	that	the	exact	same	node	
selection	 is	 used	 for	 all	 the	 runs	 performed	 in	 order	 to	
minimize	the	noise	 in	 the	output	results	 for	a	reliable	 impact	
investigation	 on	 energy	 consumption	 for	 the	 Meso-NH	
application.	The	 study	 is	performed	by	 setting	 the	maximum	
frequency	from	0.8GHz	to	1.7GHz.	
Detailed	 results	 of	 these	 frequency	 capping	 studies	 were	
provided	in	Figure	2(a)	and	2(b).	
This	study	aimed	at	identifying	the	most	suitable	frequency	to	
ensure	 efficient	 utilization	 of	 available	 resources	 and	 to	
optimize	 energy	 consumption	 with	 limited	 performance	
impact.	 The	 ERIS	 script	 played	 a	 vital	 role	 in	managing	 and	
analyzing	the	CPU	frequency,	contributing	to	a	comprehensive	
understanding	of	energy	consumption	patterns	and	strategies	
for	achieving	energy	efficiency.	
The	Meso-NH	application	was	run	on	Grid	512	and	on	4	nodes,	
we	 can	define	 the	 best	 frequency	 values	 for	 this	 application.	
This	allows	us	to	get	the	optimum	power	consumption	for	the	
workload.	
Figure	 2	 shows	 a	 1.2GHz	 GPU	 frequency	 sweet	 spot	 where	
relative	energy	is	 lowest	for	our	global	workload,	although	at	
the	cost	of	a	6%	drop	in	performance,	this	frequency	is	still	an	
interesting	energy	improvement.	
	

  

 
Figure	 2:	 Results	 of	 energy	 consumption	 (a)	 and	 time	
performance	(b)	versus	frequency	variation	

5	  Summary	and	conclusions	
In	this	paper,	we	presented	the	successful	porting	of	the	Meso-
NH	 application	 to	 the	 ADASTRA	 machine	 as	 part	 of	 the	
Progress	Contract.	The	porting	process	involved	compiling	the	
application	 in	 the	 CRAY	 environment	 and	 analyzing	 its	
performance.	We	 encountered	 various	 challenges	 during	 the	
porting,	 especially	 related	 to	 bit-	 reproducibility,	 which	
required	 careful	 attention	 and	 code	 adaptations	 to	 achieve	
both	 accurate	 numerical	 results	 and	 optimal	 performance.		
During	the	fifteen-month	project,	we	extended	the	accelerated	
part	 and	 ported	 the	 FFT	 solver,	 enabling	 us	 to	 conduct	
scientific	 simulations	 using	 128	 GPU-AMD	 nodes	 at	 a	 grid	
resolution	 of	 1.5	 billion	 points	 with	 100m	 resolution	 (Giga-
LES).	These	simulations	were	instrumental	in	studying	recent	
storms	 in	 the	Atlantic	 and	Mediterranean,	 including	 extreme	
wind	 gusts.	 The	 initial	 results	 obtained	 on	 the	 GPU-AMD	
platform	 demonstrated	 a	 remarkable	 factor	 of	 3.3	 speedup	
while	significantly	reducing	energy	consumption	compared	to	
the	 best	 current	 CPU	 computing	 architectures,	 specifically	
ADASTRA’s	Genoa	CPU	partition,	 and	were	presented	during	
the	 inauguration	of	 the	ADASTRA	supercomputer	on	May	04,	
2023	at	CINES.	
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